Меню

Стабилизатор напряжения кр142ен5а аналог

Стабилизатор напряжения кр142ен5а аналог

Совместимость импульсных и линейных регуляторов

Интегральные линейные стабилизаторы (или как их еще называют регуляторы) серии КР142ЕН5 и КР142ЕН8 (см. рисунок 1), именуемые на сленге инженеров как КРЕН и их импортные аналоги (78хх) заслуженно пользуются популярностью у разработчиков благодаря своей надежности, простоте схемы включения (см. рисунок 2) и стабильности параметров.

Этого недостатка нет у импульсных стабилизаторов напряжения производимых компанией Aimtec. Импульсные стабилизаторы (AMSRB-78-Z, AMSRI-78-NZ, AMSRO-78-Z, AMSR-78-NZ, AMSR-78-Z и т. п. (1)) конструктивно совместимы с микросхемами КРЕН и их импортными аналогами семейств 78xx. Рабочая частота импульсных регуляторов Aimtec превышает 300 кГц, а КПД достигает 90−96%. В таблице 1 приведена таблица совместимости линейных и импульсных стабилизаторов.

Таблица 1. Таблица совместимостей импульсных и линейных регуляторов напряжения.

Во что обходится использование линейного стабилизатора?

Если сравнить по цене линейный и импульсный стабилизаторы, то на первый взгляд с экономической точки зрения более эффективно использовать достаточно дешевые линейные стабилизаторы. Но если смотреть не только на стоимость конкретного компонента, а на стоимость решения в целом, то можно увидеть, что использование линейных стабилизаторов приводят к ряду издержек, на фоне которых преимущество использования импульсного стабилизатора становится еще более очевидным. Рассмотрим их подробней:
1) Стоимость радиатора. В качестве радиатора обычно используется либо часть печатной платы, дополнительная площадь печатной платы в данном случае имеет свою стоимость. Либо используется непосредственно алюминиевый радиатор, стоимость которого может варьироваться в пределах 0,3−0,5 $.
2) Стоимость дополнительного объема или площади в корпусе предназначенного для рассеяния тепла. Радиатор необходимо как-то разместить в корпусе, соответственно для его размещения требуется корпус больших размеров, чем в случае решения, когда радиатор не требуется.
3) Стоимость конструкционных особенностей корпуса связанных с необходимостью рассеяния тепла. При использовании радиатора, кроме того, что требуется больший по размерам корпус, для отвода тепла он еще должен быть, скорее всего, более сложным конструктивно.
4) Стоимость калибровки. Если внутри прибора имеются измерительные цепи, то в случае внутреннего нагрева потребуется либо специальная температурная калибровка измерительных цепей, либо применение более дорогих операционных усилителей, ЦАП и АЦП с меньшим температурным дрейфом. Кроме того, потребуется сам датчик температуры.
5) Надежность устройства. Ко всему выше сказанному следует добавить уменьшение в 2 раза надежности устройства при нагреве его компонентов на каждые 10 градусов. По этому, если имеются особые требования к надежности устройства, возможно, придется использовать электронные компоненты с большими запасами по силовым характеристикам, а, следовательно, более дорогие.
За время, прошедшее с появления первых семейств импульсных стабилизаторов, появилось уже несколько поколений. При этом новые семейства, как правило интересней по цене чем более ранние серии. Наиболее интересные по цене серии отмечены в Таблице 2.
Семейства импульсных стабилизаторов напряжения.
В таблице 2 представлены семейства интегральных импульсных стабилизаторов напряжения в SIP и SMD корпусах производимых компанией Aimtec. В настоящее время производятся модели с выходным током от 0,5 до 2 Ампер. Кликнув мышью на наименование серии, вы можете посмотреть документацию на каждую серию, а кликнув на конкретное значение выходного напряжения, вы можете посмотреть наличие данного преобразователя на складе, его цену и при необходимости купить.
Последнюю информацию по сериям импульсных стабилизаторов можно посмотреть перейдя по ссылке.

Таблица 2. Семейства интегральных импульсных регуляторов напряжения Aimtec.

7,5; AMSR-78Z link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSR-78Z.pdf?ft4=28-661; 4,75

34; 3,3, 5, 6,5, 9, 12, 15; 0,5; — ; SIP3 1,65

7,5; AMSRB-78-Z link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSRB-78-Z.pdf?ft4=10-577; 4,5

28; 3,3, 5, 12, 15; 0,5; + ; SIP3 1,65

7,5; AMSR-78-NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSR-78-NZ.pdf?ft4=41-263; 4,75

32; 3,3, 5, 6,5, 9, 12, 15; 0,5; — ; SIP3 1,65

7,5; AMSRW-78Z link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSRW-78Z.pdf?ft4=14-401; 9

72; 3,3, 5, 6,5, 7,2, 9, 12, 15; 0,5; — ; SIP3; 1,65

7,5; AMSRI-78-NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsri-78-nz.pdf?ft4=23-614; 6

36; 3,3, 5, -5, 9, 12, -12, 15, -15; 0,5; +; SIP3; 1,5

5; AMSR1-78Z link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSR1-78Z.pdf?ft4=43-534; 4,75

18; 1,5, 1,8, 2,5, 3, 3, 5; 1; — ; SIP3 1,5

15; AMSRB1-78JZ link= http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsrb1-78jz.pdf?ft4=41-524; 6

36; 3,3, 5, -5, 9, 12, -12, 15, -15; 1; +; SIP3 1,65

7,5; AMSRO-78-NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsro-78-nz.pdf?ft4=53-864; 4,75

32; 3,3, 5, -5, 12, -12, 15, -15 ; 0,5; +; SIP3; 0,75

7,5; AMSRL-78JZ link= http://www.aimtec.com/site/Aimtec/files/Datasheet /HighResolution/amsrl-78-jz.pdf?ft4=35-457; 4,5

28; 1,5, 1,8, 2,5, 3,3, 5, 6,5, 9, 12, 15; 0,5; -; SMD; 1,5

15; AMSRL1-78JZ link= http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsrl1-78-jz.pdf?ft4=32-301; 4,75

36; 1,5, 1,8, 2,5, 3,3, 5, 6,5, 9, 12, 15; 1; + ; SMD; 1,65

7,5; AMSROL-78NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsrol-78nz.pdf?ft4=34-819; 4,75

6; AMSRL-Z link= http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsrl-z.pdf?ft4=47-942; 9

72; 3,3, 5, 6,5, 7,2, 9, 12, 15 ; 0,5; — ; SMD; 1,2

15; AMSRL1-Z link= http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsrl1-z.pdf?ft4=27-645; 3

36; 1,2, 1,5, 1,8, 2,5, 3,3, 5, 6,5, 9, 12, 15; 1 ; — ; SMD; 30; AMSRL6-NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsrl6-nz.pdf?ft4=27-582; 8,3

14; 0,75-5,0; 6; — ; SMD; 50; AMSRL10-NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsrl10-nz.pdf?ft4=27-645; 8,3

14; 0,75-5,0; 10; — ; SMD; 80; AMSRL16-NZ link= http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsrl16-nz.pdf?ft4=27-582; 8,3

Читайте также:  Стабилизатор ксантановая камедь что это такое

12; AMSRW-78-NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSRW-78-NZ.pdf?ft4=14-401; 9

72; 3,3, 5, 6,5, 9, 12, 15, 24; 0,5; — ; SIP3 Верт.; 3,3

15; AMSRI1-78-NZ link= http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsri1-78-nz.pdf?ft4=31-739; 4,75

36; 3,3, 5, -5, 9, 12, -12, 15, -15; 0,5; +; SIP3 Верт.; 7,5; AMSR1.5-78-NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSR1.5-78-NZ.pdf?ft4=32-758; 6,5

13; AMSR2-78-NZ link= http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSR2-78-NZ.pdf?ft4=58-771; 4,75

30; AMSR2-78JZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsr2-jz.pdf?ft4=58-739; 6,5

36; 3,3, 5, 9, 12, 15; — ; +; SIP3 Верт.; 3, 3

15; AMSRO1-78-NZ link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsro1-78-nz.pdf?ft4=53-848; 4, 75

32; 3,3, 5, -5, 12, -12, 15, -15; 0,5; +; SIP3; 3,3

12; AMSR1-78-NZ (L) link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSR1-78-NZ.pdf?ft4=43-534; 4,75

32; 3,3, 5, 6,5, 9, 12; 1; — ; SIP3 Гориз.; 1, 65

7, 5; AMSRI1-78-NZ (L) link=http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/amsri1-78-nz.pdf?ft4=31-739; 6

36; 3,3, 5, -5, 9, 12, -12, 15, -15; 1; — ; SIP3 Гориз.; 5

13; AMSR2-78-NZ (L) link= http://www.aimtec.com/site/Aimtec/files/Datasheet/HighResolution/AMSR2-78-NZ.pdf?ft4=58-771; 4,75

Импульсные стабилизаторы могут применяться в автомобильной электронике, медицинской технике, телекоммуникационном оборудовании, электронике с питанием от аккумулятора.

Выводы
Применение импульсных регуляторов напряжения вместо линейных позволит уменьшить энергопотребление, и нагрев устройства, упростить конструктивное исполнение и повысить надежность.

Купить интегральные импульсные стабилизаторы семейства AMSR можно в любом из представительств компании Элтех Компонент.

Источник

Стабилизатор напряжения КР142ЕН5А, КРЕН5А, КР142ЕН5Б, КР142ЕН5В, КР142ЕН5Г

Помню в начале 90-х годов стабилизаторы КР142ЕН5А (или как их ещё называли КРЕН5А) были очень популярны: их ставили и в клоны спектрумов и в АОНы, везде где работала ТТЛ и 5-вольтовая К-МОП логика. На сегодняшний день КРЕН5А может показаться монстром в большом корпусе TO-220, с большим падением напряжения (2,5 В), относительно небольшим током (2 А). Сейчас того место которое раньше занимал КРЕН5А на плате, хватит на более мощный импульсный преобразователь. А если поставить современный линейный преобразователь аналогичный старичку, то освободим достаточно пространства. Но на тот момент интегральный линейный стабилизатор обладал несомненными преимуществами по сравнению стабилизаторами на дискретных элементах.

Я не призываю использовать КР142ЕН5А в новых разработках, но информация по стабилизатору может понадобиться для ремонта старого оборудования.

Стабилизатор КР142ЕН5А цоколевка

Раньше при использовании КР142ЕН5А часто пользовались нумерацией выводов от военного аналога 142ЕН5А в металлокерамическом корпусе 4116.4-3. Выводы обозначались так Вход – 17, Общий – 8, Выход – 2. Правильно нумеровать выводы по стандарту для корпусов КТ-28-2 (ТО-220), т.е. так Вход – 1, Общий – 2, Выход – 3.

Схема включения КР142ЕН5А

Минимальные емкости конденсаторов:

Параметр Входной С1 Выходной С2
Минимальная емкость для керамического или танталового, мкФ 2,2 1
Минимальная емкость для электролитического, мкФ 10 10

Стабилизатор КР142ЕН5А характеристики

  • Полярность напряжения — положительная;
  • Выходное напряжение — 5 В;
  • Выходной ток — 2 А;
  • Максимальное входное напряжение — 15 В;
  • Разность напряжения вход-выход — 2,5 В;
  • Мощность рассеивания (без теплоотвода) — 1,5 Вт;
  • Мощность рассеивания (с теплоотводом) — 10 Вт;
  • Точность выходного напряжения — ±0,1 В;
  • Диапазон рабочих температур — -45…+70 °C;

Модификации стабилизатора: КР142ЕН5Б, КР142ЕН5В, КР142ЕН5Г

Удивительно, но последняя буква в обозначении стабилизатора напряжения КР142ЕН5 определяет не только второстепенные параметра, но такой важный параметр как напряжение стабилизации: ЕН5Б и ЕН5Г стабилизируют на уровне 6В ! В то время как ЕН5А и ЕН5B – 5В. Отличия ЕН5В и ЕН5Г от ЕН5А и ЕН5Б в худшей стабильности поддержания выходного напряжения: ±4% против ±2% .

Тип
Выходное напряжение, В 4,9…5,1 5,88…6,12 4,82…5,18 5,79…6,21
Температурный коэффициент напряжений, 0,02 0,02 0,03 0,03
Максимальный выходной ток, А 2 2 1,5 1,5

Аналоги

Прототипом для отечественной разработки КР142ЕН5А был стабилизатор А7805Т фирмы «Fairchild Semiconductor». И конечно выпускалось большое количество аналогичных стабилизаторов другими фирмами. В обозначении обычно присутствует код 7805,перед ним может быть буквенное обозначение характеризующее изготовителя.

10 thoughts on “ Стабилизатор напряжения КР142ЕН5А, КРЕН5А, КР142ЕН5Б, КР142ЕН5В, КР142ЕН5Г ”

По идее — стабилизатор для 5-вольтовой логики. На практике — без цепей корректировки не обойтись. Как минимум диод или низкоомный прецизионный резистор ему в «общий», иначе 133, 155, 555 серии сбоили по-черному. Это я о КР142ЕН5А. Остальные, разве что 561 и 564 серию устраивали, со стабилитроном в подпорке. Как результат, для питания логических схем, практически не использовались, а применялись (с небольшой доработкой) в простеньких блоках питания с напряжением 5-15 В, что и обуславливало их распространенность.

«Я не призываю использовать КР142ЕН5А в новых разработках, но информация по стабилизатору может понадобиться для ремонта старого оборудования. » — ХА ХА ХА . Я их продолжаю использовать в схемах с 32разрядными ARM процессорами

Чего-чего? КРЕН5А без стабилитрона, диода или резистора даёт чистые 5 вольт, а с ними — завышает. Это значит (если у вас 155 и 555 серия сбоили) что у вас было большое сопротивление от КРЕН5А до потребителей, либо была убогая разводка питания к корпусам микросхем, либо и то, и то.
Стабилитрон, диод или резистор просто повышают напряжение (а стабильность, как ни странно, снижают), причём сильно повышают.
У меня никогда в жизни не сбоили серии 155 и 555 при питании от КРЕН5А безо всяких подпорок, а ведь платы бывали большими, и не только 155 и 555 на них были, практически утыкаться в ограничение по току доводилось…
Однако соглашусь с тем, что лучше КРЕН5А ставить как можно ближе к потребителю, чтобы не было между ними длинных проводов и разъёмов.

Читайте также:  Рычаг переднего стабилизатора тойота

Если в обычных схемах с ТТЛ-логикой кренки работали нормально, то с процессором Z80 иногда сбоили. Изредка встречались кренки со слегка заниженным напряжением. В свое время использовал их наверное сотнями на Спектрумы…

Стабилизаторы 7805 функциональный аналог КРЕНки — топология и характеристики (кроме выходного напряжения) у них различны! — и при одинаковой нагрузке (и прочих условиях) греются они по разному. Даже 7805 от разных производителей и то совсем разные встречаются … Так что лучше переплатить за бренд, чем брать ноунейм с перекошенной маркировкой.
Непосредственно КРЕН5 90-х годов вполне сносно работают с контроллерами avr-mega, разве что греются сильнее современных 7805.

Косяк этих чипов в другом. Крен5(включая специсполнения) и 7805 или 7806 не одно и тоже. Перепад напряжения максимальный (вход-выход) у отечественных заявлен 15В , у импорта 35В. Можно было бы говорить что ошибка, но практика показывает действительно пробой происходит при превышении этих значений(отечественные выдерживают выборочно вольт до 25 но такое использование их это адская машина). Отсюда очень неприятные особенности для использования отечественных вариантов, неудобно заморачиваться подбором диапазона входных напряжений, он вообще никакой. Ниже не хватит для нормальной работы схемы, выше сразу подходим к пределу за которым пробой очень вероятен. Из плюсов на этом фоне есть: когда кристалл пробивает как правило все три вывода приходят в состояние близкое к кз. Между входным и общим может быть ом 15-25 на остывшем. То есть за счет такого шунтирования и этим подсадки входного напряжения(если схема без дополнений типа слабых диодов в цепи общего или резисторов) то что за стабилизатором выживает обычно, не испытывает перенапряжения. И кристалл кажется сам по себе взят сильноточной версии(до 3А) может быть поэтому и такое малое максимальное входное. И как это счастье исполь

Косяк этих чипов в другом. Крен5(включая специсполнения) и 7805 или 7806 не одно и тоже. Перепад напряжения максимальный (вход-выход) у отечественных заявлен 15В , у импорта 35В. Можно было бы говорить что ошибка, но практика показывает действительно пробой происходит при превышении этих значений(отечественные выдерживают выборочно вольт до 25 но такое использование их это адская машина). Отсюда очень неприятные особенности для использования отечественных вариантов, неудобно заморачиваться подбором диапазона входных напряжений, он вообще никакой. Ниже не хватит для нормальной работы схемы, выше сразу подходим к пределу за которым пробой очень вероятен. Из плюсов на этом фоне есть: когда кристалл пробивает как правило все три вывода приходят в состояние близкое к кз. Между входным и общим может быть ом 15-25 на остывшем. То есть за счет такого шунтирования и этим подсадки входного напряжения(если схема без дополнений типа слабых диодов в цепи общего или резисторов) то что за стабилизатором выживает обычно, не испытывает перенапряжения. И кристалл кажется сам по себе взят сильноточной версии(до 3А) может быть поэтому и такое малое максимальное входное. И как это счастье использовать? Кто не очень ориентируется в применении для них коротко поясню при включении (запуске) источника до момента заряда питаемых цепей по выходу(обычных конденсатов фильтрации питания) перепад вход-выход может быть близким к значению при кз выхода(схема стабилизатора имеет защиту на этот случай, это её нормальная функция) то есть для 142ен5а(или б), кр142ен5а, кр142ен5б это допустимые не более 15В. В то время как LM7805, LM7806, заявленные как аналоги вообще то, допускают до 35В. То есть запитывать крен отеч. для обеспечения минимального перепада(в работе он снижается на значение выходного напряжения 5 или 6 вольт в зависимости от того какой чип буква а или б,в,г) надо или от предварительного стабилизатора или какого то другого источника(батареи) напряжение которого никогда не привысит 15В. В авто это не годится, при пробое регулятора в генераторе напряжение бортсети при выключенных фарах легко поднимается до 25В, батарея будет кипеть, ограничение будут осуществлять диоды в выпрямителе генератора, есть у них такая особенность превращаться в этом режиме в стабилитроны). Источник типа адаптера питания небольшого …на холостом ходу на вторичках трансформатора там как правило очень увеличенное от номинального значения напряжение, слпротивление тонких проводов обмоток и потери в сердечнике делают сильно зависимым выходное напряжение от нагрузки. Итого 2,5-3В запас на работу схемы в чипе в норм режиме, еще вольта 4 на колебания сети и запас чтоб ниже уровня пульсаций схема не уходила и получается входной диапазон от 13-15 В допустимый. Это извините хе…ня с которой просто иметь дело не хочется. Хотя в целом схема и работа чипа устраивают вполне. Кто протащил жту технологию? Почему 15 а не 35 В как у аналога(или образца для подражания)? Вредительство какое то….или думать не думали(появились наши аналоги по моему ко второй половине восьмидесятых и вот такие «странные» ). Поправьте меня кто знает другие версии положения дел по этим чипам. Внимательно просматривайте тех документацию производителей.
Столько много написал не поленился потому что кому то пригодится, если прочтет мой коммент вдумчиво

Читайте также:  Аналог девайс стабилизаторы напряжения

Косяк этих чипов в другом. Крен5(включая специсполнения) и стабилизаторы 7805,7806 не одно и тоже. Перепад напряжения максимальный (вход-выход) у отечественных заявлен 15В , у импорта 35В. Можно было бы говорить что ошибка, но практика показывает действительно пробой происходит при превышении этих значений(отечественные выдерживают выборочно до 25В но такое использование их это адская машина). Отсюда очень неприятные особенности при использования отечественных вариантов, неудобен подбором диапазона входных напряжений, он вообще никакой. Ниже напряжение не хватит для нормальной работы схемы, выше сразу подходим к пределу за которым пробой очень вероятен. Из плюсов на этом фоне есть: когда кристалл пробивает как правило все три вывода приходят в состояние близкое к короткому замыканию между входным и общим может быть ом 15-25 на остывшем, уже вышедшем из строя. То есть за счет такого шунтирования по входу и этим подсадки напряжения почти до нуля (если схема стабилизации без дополнений типа слабых диодов в цепи общего или резисторов), всё что низковольтное за стабилизатором выживает обычно, за счет такого характера отказа не испытывает перенапряжения. И кристалл кажется сам по себе взят сильноточной версии(до 3А) может быть поэтому и такое малое максимальное входное(перепад вход-выход макс.). И как это счастье использовать? Кто не очень ориентируется в применении на практике, для них коротко поясню: при включении (запуске) источника до момента заряда питаемых цепей по выходу(обычных конденсатов фильтрации питания) перепад вход-выход может быть близким к значению при кз выхода(схема стабилизатора имеет защиту на этот случай, это её нормальная функция) то есть для 142ен5а(или б), кр142ен5а, кр142ен5б это допустимые не более 15В. В то время как LM7805, LM7806, заявленные как аналоги вообще то, допускают до 35В(есть ограничения по области безопасной работы значение выходного тока при таком варианте до 0.5А примерно, при максимальном перепаде то есть 30-29 Вольт) . Поэтому корректно запитывать крен отечественный, для обеспечения допустимого перепада(в работе он снижается на значение выходного напряжения 5 или 6 вольт в зависимости от того какой чип буква а или б,в,г), надо или от предварительного стабилизатора или какого то другого источника(батареи) напряжение которого никогда не превысит 15В. В авто например это не получается в аварийном режиме бортсети(при 12В варианте), при пробое регулятора в генераторе напряжение бортсети при выключенных фарах легко поднимается до 25В, батарея будет кипеть, ограничение будут осуществлять диоды в выпрямителе генератора(есть у них такая предусмотренная специально особенность превращаться в этом режиме в стабилитроны). Источник типа адаптера питания небольшого …на холостом ходу на вторичках трансформатора там как правило очень увеличенное от номинального значения напряжение, сопротивление тонких проводов обмоток и потери в сердечнике делают сильно зависимым выходное напряжение от нагрузки. Итого 2,5-3В запас на работу схемы в чипе в норм режиме, еще вольта 4 на колебания сети и запас чтоб ниже уровня пульсаций схема не уходила и получается входной диапазон от 13-15 В допустимый, для адаптера не подойдёт. Получается с таким стабилизатором иметь дело совсем не хочется. Хотя в целом схема и работа чипа устраивают вполне. Кто протащил эту технологию? Почему 15 а не 35 В как у аналога(или образца для подражания)? Вредительство какое то….или думать не думали(появились наши аналоги по моему ко второй половине восьмидесятых и вот такие «странные»). Поправьте меня кто знает другие версии положения дел по этим чипам. Внимательно просматривайте тех документацию производителей.
Лучше уж использовать просто транзистор(или составной) и стабилитрон и обычную классическую схему без сюрпризов с коэффициентом стабилизации около 30 чего часто вполне достаточно, а в коллекторе транзистора плавкий резистор(«японский вариант»), или же какую то схему защиты в дополнение. Или применять импортные варианты чипа LM7805(6) и аналогичные других фирм.

Источник