Меню

Стабилизатор напряжения инверторный или электромеханический

Какой стабилизатор выбрать для котла: релейный или инверторный

Сегодня уже все понимают, что нестабильность напряжения в электрических сетях (особенно в загородной зоне) обусловливает необходимость приобретения оборудования, способного надежно защитить все имеющиеся электроприборы и устройства.

Перед потребителем становится вопрос о приобретении стабилизатора напряжения. Как не ошибиться при выборе той или иной модификации? Что предпочесть: давно знакомый релейный классический или сравнительно новый инверторный?

Рассматривая приоритетность при выборе того или иного защитного электрооборудования, надо оценить степень возможных эксплуатационных рисков имеющейся техники, а также необходимые и достаточные параметры устройств, призванных эту технику защищать.

Сопоставим параметры, которые представляются наиболее существенными:

  • обеспечение «чистого синуса» и точности удержания напряжения;
  • надежность и ремонтоспособность;
  • способность поддержания мощности в диапазоне напряжений;
  • перегрузочная способность;
  • собственная потребляемая мощность;
  • габариты, вес, цена и некоторые другие.

«Чистый синус» и точность удержания напряжения

Классический релейный стабилизатор обеспечивает точность 5-7 %,

Инверторный – 1- 2% и «чистый синус».

Что предпочесть в том или ином случае?

Попробуем разобраться на примере.

Мы знаем, что в настоящее время для отопления загородных домов обычно применяются газовые котлы, оснащенные насосами циркуляции теплоносителя. Циркуляционные насосы были изобретены в 1929-ом и начали массово применяться в бытовых котлах в 1950-х годах. И всё это время они прекрасно работали с «грязным синусом», и достаточной признавалась точность удержания напряжения 5 – 7%.

Релейные стабилизаторы транслируют сеть такой, какой она была 50 лет назад, есть и будет ещё, как минимум, столько же лет. И обеспечивают 5-7 процентов удержания. То есть обеспечивают необходимые и достаточные параметры стабилизации.

Что касается инверторных стабилизаторов, то до 1933 года, когда была доказана теорема Котельникова, электронные инверторы просто не существовали по причине отсутствия теоретических предпосылок, а потом до появления мощных и недорогих полевых транзисторов были очень дорогими.

Поэтому производители котлов не закладывали в регламент эксплуатации своих изделий требования к качеству сети (во всех странах это уже оговорено нормативами для энергопоставляющих компаний), оговаривая только рабочие и предельные напряжения, при которых котел будет работать долго.

Напрашивается вывод, что для обеспечения надежной эксплуатации современного котла достаточно наличия классического релейного стабилизатора соответствующей мощности. А наличие «чистого синуса» и точности 1 – 2 % в инверторных стабилизаторах не добавляет надежности работы оборудования. Эти параметры инверторов в данном случае напоминают рекламный ход, как, к примеру, на упаковке моющего средства пишут – «20% — бесплатно».

В случае же необходимости защиты точной измерительной или медицинской аппаратуры данные параметры инверторов могут быть актуальными.

Надежность и ремонтоспособность

Надежность оборудования определяется многими факторами. Самыми явными из них являются качество и количество комплектующих элементов, применяемых при производстве изделий.

Если исходить из того, что производители и тех и других стабилизаторов гарантируют высокое качество элементной базы, то следует оценить количественную составляющую.

Крепёжные изделия, краску и другие малосущественные компоненты в расчет не берем. Сравним количество электроэлементов.

Классический стабилизатор построен проще и включает в себя от 50 до 80 элементов и выделяет при работе минимум тепла.

В инверторном комплектующих в 3 — 5 раз больше и выделение тепла весьма существенно, что обусловливает необходимость наличия большого радиатора или вентилятора.

А теперь немного теории. Надежность изделия зависит от надежности каждого входящего элемента и количества этих элементов. Кроме того, повышение температуры на 10 градусов снижает надежность (в литературе приводятся различные цифры, вплоть до уменьшения срока службы в 2 раза).

Если принять надежность одного элемента равной 0,99, то суммарная надежность трех элементов составит: 0,99х0,99х0,99=0,97 (т.е. вероятность отказа 3%), а при наличии 10 элементов этот показатель будет равен 0,90 (т.е. вероятность отказа 10%).

Конечно, современные элементы имеют надежность выше 0,99, но тенденция снижения надежности при увеличении количества элементов весьма показательна.

Можно возразить, что при наличии большого количества элементов наши телевизоры, компьютеры, стиральные машины нормально работают годами. Но не стоит забывать, что бытовая техника работает далеко не полные сутки, а стабилизатор, не выключаясь, должен работать постоянно.

Практика эксплуатации классических стабилизаторов показывает, что они могут работать 10 лет и более. По инверторным моделям такой статистики пока просто нет.
Мы знаем, что любая, даже самая качественная, техника порой требует ремонта. И потребителю небезразлично, насколько легко или сложно будет этот ремонт осуществить.

Читайте также:  Mosfet как стабилизатор тока

В течение гарантийного периода и при наличии доступной сервисной службы ремонт будет сделан по крайней мере бесплатно, хотя сроки, скорее всего, будут зависеть от сложности ремонта. А в иных случаях могут возникнуть проблемы, связанные с ремонтопригодностью изделия.

Ремонтопригодность стабилизаторов определяется несколькими параметрами.

Это плотность монтажа, легкость или сложность доступа к элементам. Это необходимость наличия того или иного оборудования для демонтажа и монтажа ремонтируемого изделия, наличия приборов и стендов для его наладки и тестирования. Это доступность элементной базы в случае необходимости замены неисправных деталей. И, конечно же, требования к квалификации ремонтного персонала.

Классические релейные стабилизаторы имеют низкую плотность монтажа и их элементная база не предполагает редких и дефицитных микросхем. Используемые приборы просты, а в качестве стенда обычно можно просто использовать ЛАТР. Поэтому требования к квалификации ремонтного персонала не особенно высоки, можно сказать, что достаточна квалификация на уровне гаражного радиолюбителя. Понятно, что при таких условиях ремонт не будет большой проблемой для потребителя.

С инверторными стабилизаторами картина совершенно иная. Компоновка здесь плотная, и основная масса элементов – это SMD, специализированные микросхемы. Для монтажа и демонтажа SMD потребуется приобрести специальное оборудование, а замена таких микросхем невозможна без хорошей паяльной станции. Кроме того, сами эти элементы не всегда можно будет легко приобрести, а в небольших населенных пунктах их покупка будет практически нереальна. Из оборудования обязателен осцилограф с приличной полосой пропускания. Понятно, что квалификация персонала должна быть не ниже инженера. И скорее всего придется обращаться к производителю.

Очевидно, что ремонт релейного стабилизатора представляется более доступным, чем ремонт инверторного, как по срокам, так и по цене.

Способность поддержания мощности в диапазоне напряжений

Классический стабилизатор поддерживает полную мощность во всем заявленном диапазоне напряжений.

Инверторный поддерживает полную мощность лишь в части заявленного диапазона напряжений, при дальнейшем снижении входного напряжения отдаваемая мощность снижается. Поэтому при выборе инверторного стабилизатора следует учитывать нужную мощность с возможным снижением входного напряжения. И при необходимости придется выбирать стабилизатор с запасом.

Перегрузочная способность

На практике, как правило, необходимо считаться с периодически возникающими перегрузками в сети, связанными, например, с пусковыми токами.
Защитное оборудование, каковым является стабилизатор, должно обладать способностью выдерживать эти перегрузки в течение определенного времени. Либо обладать запасом по мощности.

Классический стабилизатор способен выдерживать перегрузки в три – четыре раза в течение десятков секунд, что вполне достаточно при запуске того или иного электрооборудования, будь то прибор освещения или двигатель. Это может быть стиральная машина, холодильник, пылесос или котел и т.д. При выборе классического стабилизатора некоторый запас можно предусмотреть, но для малых мощностей не обязательно.

Инверторные же стабилизаторы, если и могут держать перегрузку, то это время измеряется лишь несколькими секундами или даже долями секунды. Поэтому запас по мощности при выборе инверторного

стабилизатора просто необходим. Так для холодильника запас должен быть, как минимум, вдвое, а скорее всего втрое, для погружных насосов — в четыре – пять раз.
Это означает, что применение инверторных стабилизаторов при работе с подобными нагрузками существенно ограничено или просто дорого.

Собственная потребляемая мощность

Совершенно очевидно, что и тот и другой стабилизаторы будут сами потреблять энергию на обеспечение своей работы.

Классический стабилизатор потребляет энергию на 3 реле, индикацию и контроллер. Общий ток порядка 100мА при напряжении 12В (3 реле: 30мА х3 = 90мА). С учетом потерь на источник питания (умножим на 3) имеем в худшем случае 3,6Вт. Это справедливо для моделей до 1000ВА. Стабилизаторы от 4500ВА до 40000ВА имеют потребляемую мощность 15 – 20Вт.

Собственная мощность инверторных стабилизаторов зависит от полной мощности той или иной модели. Для моделей 350ВА это 25Вт, для 3500ВА – 40Вт, для 12000ВА – 75Вт, для 13500 это уже 150Вт и т.д.

Простой расчет показывает, что инверторный стабилизатор мощностью 350ВА за год «съест» энергии на сумму более 1000 рублей, 12000ВА более 3000 рублей, а 13500 ВА соответственно еще в 2 раза больше, т.е. более 6000 рублей.

Читайте также:  Стойка заднего стабилизатора для geely emgrand x7 nl4 1014026639

По классическим даже мощным моделям эти затраты не превысят 1000 рублей в год.

Очень краткие выводы

Классический релейный стабилизатор

  • Точность удержания напряжения достаточна для работы котла.
  • Не искажает форму сети.
  • Поддерживает полную мощность во всем заявленном диапазоне напряжений.
  • Простая схемотехника, легко ремонтируется.
  • Надежен, выпускается очень давно.
  • Выдерживает большие перегрузки.
  • Не шумит.
  • Потребляет мало энергии на обеспечение собственной работы.
  • Большой вес.
  • Высокая цена силового трансформатора

Инверторный стабилизатор

  • Точность поддержания выходного напряжения и сформированный синус, что может быть актуально для высокоточной измерительной техники и медицинской аппаратуры.
  • Снижение выходной мощности при снижении входного напряжения.
  • Сложная схемотехника и, как следствие, снижение надежности и сложность ремонта.
  • Низкая перегрузочная способность.
  • На мощностях выше 500 – 700ВА необходим вентилятор, который будет источником шума.
  • Значительная потребляемая мощность на управление.

Источник

Какой стабилизатор напряжения лучше: основные виды и их особенности

Для стабилизации напряжения используется целый ряд устройств, работающих на разных технических принципах. Несмотря на конструкцию, стабилизаторы должны выполнять одну функцию – обеспечивать потребителя качественным напряжением, не зависящим от колебаний сети. В критических ситуациях домашние стабилизирующие устройства должны автоматически и очень быстро отключать нагрузку от сети и сами отключаться во избежание аварии.

Какие бывают стабилизаторы

Стабилизация напряжения может быть реализована различными способами.

По конструкции стабилизирующие устройства можно разделить на две группы:

  • Электромеханические устройства;
  • Электронные устройства;

К первой группе относятся стабилизаторы с серводвигателем. Ко второй группе относятся следующие приборы:

  • Релейные стабилизаторы;
  • Устройства на полупроводниковых ключах (тиристоры, симисторы);
  • Приборы с двойным преобразованием;
  • Феррорезонансные стабилизаторы.

Каждое устройство обладает определёнными достоинствами и недостатками. Они хорошо заметны при сравнении технических параметров, поэтому для выбора конкретной модели нужно знать принцип работы каждого стабилизатора для дачи или дома.

Стабилизатор с релейным переключением

Релейный стабилизатор напряжения выравнивает сетевое напряжение путём коммутации обмоток силового трансформатора. Принцип его работы крайне прост. Входное напряжение поступает на первичную обмотку силового трансформатора и одновременно на плату контроля и управления. Вторичная обмотка разделена на одинаковые секции и число витков в ней больше, чем в первичной. То есть трансформатор в случае необходимости может повышать или понижать подаваемое напряжение. Плата управления включает в себя выпрямитель, контроллер и транзисторные ключи, управляющие электромагнитными реле.

Если напряжение сети отклонилось от номинала на определённую величину, контроллер через транзисторный ключ включает реле. Оно своими контактами изменяет коэффициент трансформации, то есть переключает вторичную обмотку на повышение или понижение. В результате напряжение на выходе постоянно удерживается в допуске, но оно никогда не будет равно 220В, поскольку, переключая секции обмотки, устройство допускает ступенчатое, а не плавное изменение напряжения. Но чем большее количество реле применяется в схеме устройства, тем выше его точность.

Релейный стабилизатор обладает следующими положительными качествами:

  • Хорошая скорость переключения;
  • Большой интервал входных напряжений;
  • Неискажённая форма напряжения;
  • Доступная цена.

Недостатки релейного устройства:

  • Ступенчатое переключение;
  • Низкая точность;
  • Шум при работе;
  • Возможное подгорание контактов.

Релейные стабилизаторы так же имеют ограничение по мощности, что определяется невозможностью контактов реле коммутировать слишком большие токи.

Выбор производителя. При выборе стабилизатора напряжения также обращайте внимание на производителя. Например, много стабилизаторов напряжения якобы отечественных марок производятся в Китае, и имеют завышенные показатели, отличающиеся от реальности. Но есть и те, которые отличаются своей надежностью и хорошим сроком службы. В качестве положительного примера можно привести стабилизаторы от компании «Энергия», которые пользуются большой популярностью среди покупателей, и имеют множество положительных отзывов, которые легко можно найти на страницах в интернете. Весь ассортимент вы можете найти на сайте официального представителя компании по этой ссылке.

Стабилизатор с серводвигателем

Электромеханический стабилизатор напряжения так же, как и релейный, работает с использованием силового трансформатора. В устройстве имеется плата контроля, но она управляет регулировкой не с помощью реле, а выбирает угол поворота серводвигателя. На его оси установлена каретка с угольным роликом или щёткой, которая перемещается по обмотке силового трансформатора. Пропорционально углу поворота изменяется напряжение на выходе.

Устройство обеспечивает очень точную установку выходного напряжения, но скорость выравнивания напряжения очень низкая. Приведем небольшой пример. Если напряжение сети будет меньше определённого предела, импульсный блок питания персонального компьютера может на доли секунды отключиться и пока серводвигатель перемещает контакт чтобы повысить напряжение, компьютер уйдёт в перезагрузку. Таким образом, можно потерять важные данные.

Читайте также:  Боковой стабилизатор для tandem tip on

Главным недостатком электромеханического стабилизатора считается необходимость регулярного обслуживания. Пыль и грязь, попадающие под движущийся контакт, могут подгорать или вызывать появление искр, поэтому электромеханические стабилизаторы нельзя применять там, где используется газовое оборудование.

К преимуществам сервоприводного стабилизатора можно отнести следующие параметры:

  • Высокая точность установки;
  • Большой интервал входных напряжений;
  • Низкая цена.

Но критичные особенности сервоприводных стабилизаторов – медленное выравнивание напряжения, шум при работе и необходимость регулярного обслуживания, существенно снижают область их применения.

Релейный или электромеханический

Определить, какой стабилизатор лучше, релейный или электромеханический, достаточно сложно. Если для потребителя важна высокая точность установки, а изменения в сети происходят нечасто и в небольших пределах, то оптимальным вариантом будет применение электромеханического стабилизатора. Здесь главным критерием выбора будет точность и невысокая стоимость. Релейный стабилизатор обеспечивает очень хорошую скорость срабатывания, но при этом точность установки напряжения на выходе будет не такой высокой.

Сетевое напряжение, поступающее в жилые дома, регламентируется стандартом, при котором отклонение от 220В должно составлять не более ± 10%. При этом некоторые бытовые устройства допускают нормальную работу с отклонениями сети от номинала до 15% так, что напряжение, на выходе релейного стабилизатора, изменяющееся в пределах 198-242 вольта, можно считать нормой.

Скорость переключения обмоток трансформатора релейного стабилизатора составляет 15-20 мс, что вполне нормально для большинства бытовых электронных устройств. Стоимость релейного стабилизатора невысока, а срок его службы обычно соответствует сроку службы реле, равному числу срабатываний, которое в большинстве случаев превышает 1 000 000.

Электронный стабилизатор напряжения

К этой группе относятся тиристорные или симисторные устройства для выравнивания напряжения, а так же приборы, использующие двойное преобразование или инверторы. Феррорезонансные стабилизаторы уже давно не используются для питания домашней техники, и могут применяться только на производстве.

Электронный стабилизатор напряжения, выполненный на полупроводниковых ключах, работает на том же принципе, что и релейный прибор, только в качестве коммутирующих элементов в нём используются тиристоры или симисторы.

По сути, эти полупроводниковые приборы представляют собой электронные реле, управляемые напряжением. Они так же переключают обмотки трансформатора по аналогии с реле. Вместо реле в электронном стабилизаторе используется два тиристора или один симистор. Отсутствие механических деталей обеспечивает длительный срок службы, а возможность полупроводниковых приборов коммутировать большие токи позволяет таким устройствам работать с мощными нагрузками.

Недостатки тиристорных стабилизаторов:

  • Сильно искажённая форма напряжения на выходе;
  • Высокая стоимость;
  • Невысокая точность.

Самым перспективным классом электронных стабилизаторов можно считать устройства, работающие с двойным преобразованием сетевого напряжения. Кроме высокой цены, они не имеют серьёзных недостатков. При решении вопроса, какой стабилизатор лучше релейный или электронный, предпочтение отдаётся инверторном устройству, полностью собранному на полупроводниках, если цена не играет существенной роли.

Такой прибор обладает рядом преимуществ перед другими моделями:

  • Мгновенная скорость обработки любых изменений;
  • Отличная точность коррекции;
  • Гладкая синусоида на выходе;
  • Большой диапазон входных величин;
  • Поддержка стабильной частоты.

Единственное, что очень важно для данной конструкции – это охлаждение мощных полупроводниковых приборов. Для этого в стабилизаторе предусмотрен малошумный вентилятор. Также подобные устройства имеют очень высокую цену, поэтому если это является решающим моментом при выборе, то лучше всего отдавать предпочтение релейным стабилизаторам, как наиболее практичному варианту для применения в самых различных областях, а в особенности в быту.

Отечественные стабилизаторы напряжения

На рынке отечественных электротехнических устройств одним из безусловных лидеров является компания «Энергия». В числе её продукции имеются линейки стабилизаторов напряжения. Это сервоприводные New Line, релейные Voltron и тиристорные Classic, а так же Hybrid, в которых используется электромеханический и релейный принцип стабилизации, в зависимости от значения напряжения в сети.

Стабилизаторы рассчитаны на мощность от 500 Вт до 30 кВт и на большой диапазон колебаний сетевого напряжения. Все стабилизаторы «Энергия» имеют электронную систему защиты по всем параметрам, а некоторые устройства оборудованы информационным дисплеем.

Источник