Меню

Стабилизатор напряжения для ветряка

Прочее

Мощный стабилизатор напряжения ветрогенератора

В предложенной статье приводится описание стабилизатора, который вот уже около трех лет верой и правдой совместо с ветрогенераторной установкой практически круглый год обеспечивает меня электричеством. Он может также использоваться и для стабилизации напряжения в обычной сети.

При постройке ветрогенераторной установки на базе асинхронного электродвигателя с короткозамкнутым ротором возникла необходимость в мощном трехфазном стабилизаторе напряжения мощностью более 2 кВт. Напряжение на генераторе ‘прыгало’ при сильном ветре до 500 В, а при слабом опускалось до 100 В. В итоге были разработаны и испробованы несколько типов стабилизаторов разной конструкции и сложности. Самой простой и надежной в работе оказалась конструкция однофазного стабилизатора мощностью 2 кВт, но при небольших доработках его можно переделать в трехфазный практически на любую мощность (до 32 кВт!).

Главным достоинством стабилизатора является большая мощность, высокий КПД, относительно низкая стоимость, широкий диапазон регулируемых напряжений. К недостаткам относится достаточно большая инерционность, из-за чего невозможно компенсировать быстрые изменения напряжения. Такой недостаток легко устраняется конструкцией самого ветрогенератора.

Напряжение с генератора или сети поступает на регулируемый автотрансформатор, ползунок которого перемещается с помощью электромотора с червячным редуктором С автотрансформатора снимается напряжение для питания нагрузки, блока питания устройства, а также на выпрямитель следящею устройства (устройства управления УУ). После обработки поступившего напряжения подается сигнал на включение-выключение электромагнитных ключей, которые управляют работой электромотора. При этом индикаторы показывают величину выходного напряжения. Блок питания обеспечивает устройство нужными напряжениями питана: для индикаторов, электрических ключей и мотора +18 В для устройства управлениях +5 В.

Электрическая принципиальная схема стабилизатора показана на рис.1 . Переменное напряжение через концевые выключатели SQ1, SQ2 поступает на автотрансформатор Т1. С движка автотрансформатора напряжение снимается на питание нагрузки, трансформатора блока питания и на диодный мост V1-V4. С диодного моста выпрямленное напряжение поступает на делитель R1-R4. Если напряжение на выходе автотрансформатора в пределах 210. 230 В, то транзистор V9 закрыт, а транзистор V7 открыт и на выходах элементов DD1.2 и DD1.5 присутствует лог.’1′, транзисторы V10 и V11 закрыть, реле К1 и К2 обесточены, двигатель M1 обесточен и светится индикаторная лампа HL1 ‘Норма’. В таком состоянии устройство находится в дежурном режиме до тех пор, пока напряжение на автотрансформаторе не выйдет за установленные рамки. При повышении напряжения выше 230 В открываются стабилитрон V8 и транзистор V9, на выводе 10 элемента DD1.5 появляется лог.’1′ и открывает транзистор VТ1. Срабатывает реле К2, своими контактами К2.1 отключает лампу HL1, а контактами К2.2 зажигает лампу HL2 ‘Много’. Контактами К2.3 включает двигатель M1, который передвигает ползун автотрансформатора до тех пор, пока напряжение на ползуне не станет меньше 230 В. При этом напряжение на стабилитроне V8 станет меньше напряжения стабилизации, транзисторы V9 и V11 закроются, реле обесточится, лампа HL2 погаснет, а НL1 загорится. Контакты К2.3 переключатся в исходное положение и замкнут обмотку якоря накоротко, вследствие чего будет произведено быстрое торможение пол-

Технические характеристики стабилизатора

Максима л ьноя выходная мощность. 2000 Вт

Напряжение стабилизации. 220 В

Диапазон изменения входного напряжения. 100. 300 В

Диапазон изменения выходного напряжения. 210. 230 В

Время установки напряжения на выходе стабилизатора

при изменении входного напряжения на 10 В. 0,2. 0,4 с

Рис.1 Электрическая схема стабилизатора напряжения

зуна. Если напряжение станет меньше 210В, то стабилитрон V5 закроет транзистор V7, на выводе 4 элемента DD1.2 появится высокий уровень, который откроет транзистор VI0 и включит реле К1. При этой погаснет лампа НИ и загорится лампа HL3 ‘Мало’. Контактами К 1.3 включится электродвигатель Ml и увеличит напряжение на автотрансформаторе до тех пор, пока не откроется стабилитрон V5. После чего транзистор V7 откроется, а V10 закроется. Обесточится реле К1, погаснет лампа HL2, и загорится НL1. Контакты К 1.3 переключатся, и двигатель M1 быстро затормозит. Если напряжение на генераторе сильно увеличится или уменьшится (300 и 100 В соответственно), то ползун нажмет концевой выключатель SQ1 (при напряжении 300 В) или SQ2 (при напряжении 100 В) и подача напряжения полностью прекратится, при этом будет гореть пампа HL4 ‘Авария питания’. Снять аварию можно только после того как будет устранена причинa аварии и полностью отключена нагрузка путем нажатия на 5 секунд кнопки SB1 ‘Сброс аварии’. И только после того, как напряжение на стабилизаторе полностью установится, можно включить нагрузку. Элементы R10, С2 и R11, С5 необходимы для устранения ‘влияния’ двигателя и реле во время коротких скачков напряжения. Кнопками SB2 и SB3 можно управлять стабилизатором вручную, только при этом нужно переключить тумблер SB4 в положение ‘Ручное управление’. Блок питания построен по стандартной схеме и в пояснении не нуждается. Единственное, что нужно пояснить, так это роль диода V16. Он выполняет функцию фильтра, т.е. уменьшает влияние реле и двигателя на работу устройства управления.

Для изготовления автотрансформатора нужно взять сталь из статора 3-киловаттного асинхронного электродвиателя и обмотал двумя-тремя слоями лакоткани. После чего намотать плотно виток к витку изолированный медный провод диаметром 1,5 мм. Оставшийся конец провода хорошо заизолировать и приклеить к трансформатору клеем ‘Момент’ или ‘БФ2’. Отвод сделать от последней трети витков. В верхней части трансформатора, где будет двигаться ползун, с помощью наждачной бумаги уберите слой лака. После чего залейте всю конструкцию нитролаком, кроме, конечно, зачищенного участка, и дайте лаку полностью высохнуть. Пока трансформатор сохнет выпилите из гетинакса или плексигласа чуть больше диаметра трансформатора основание и крышку. В крышке сделайте отверстие по центру и установите мотор с редуктором. На вал редуктора наденьте через изоляционную трубку ползунок. Сам ползунок взят из ЛАТРа типа ПОСН-2-220-82, только пришлось немного удлинить поводок. Теперь поставьте трансформатор на основание, наденьте сверху крышку и скрепите все шпильками. Вставьте трансформатор по центру и укрепите его с боков резиновыми вставками. Концевые выключатели установите на верхней крышке так, чтобы ползунок привода ж в действие. SQ1 нужно установить в самом конце намотки, SQ2 — в конце первой трети намотки. Будьте предельно внимательны, когда будете зачищать место для поводка, чтобы не замкнуть витки. Зачищать нужно только сверху провода, после чего обдуйте трансформатор сжатым воздухом под давлением 3. 3.5 кгс/см 2 . Автотрансформатор готов! Как уже было сказано выше, трансформатор нужно мотать проводом марки ПЭВ1 или ПЭЛ плотно виток к витку по внутреннему диаметру, а снаружи укладывать с равномерным шагом в один слой.

Читайте также:  Втулки заднего стабилизатора passat b6

Детали. В стабилизаторе можно использовать сопротивления МЛТ, ОМЛТ мощностью 0,25 Вт. Резисторы R1, R2 типа МЛТ мощностью 2 Вт. Диоды V1-V4, V12-V15 любые на рабочее напряжение не ниже 400 В и обратный ток 1 А Реле ТКЕ54ПД1 с обмоткой на 24 В, электродвигатель с червячным редуктором взят от стеклоочистителя автомобиля ГАЗ-53. Трансформатор Т2 любой с выходным напряжением 18 В и мощностью 120 Вт. Микросхема К155ЛН1 или К133ЛН1. Транзисторы V7-V9 типов КТ315В, КТ312Б, КТ3102; VI0, VI1 типов КТ815А, КТ817А. Концевые выключатели Д701. Кнопки SB1-SB3 любые с автовозвратом. Тумблер SB4 типа МП, МТ2. Подстроечные сопротивления типа СПЗ-1Б. Конденсаторы С1, С5, С7 типов К21-8, КЛС и т.д, С2-СЗ типа К10-7В, С4 типа К50-3, К50-ЗВ на напряжение 50 В; С6 шпа К50-18, К50-24 емкостью 8000 мкФх50 В. Лампы накаливания КН24-90, КХЛ4. Неоновая лампа типа ИН1, ИН2 или любая другая.

Рис.2 Структурная схема стабилизатора напряжения

Наладка. Прежде всего проверьте качество монтажа и правильность всех соединений. Удалите из держателей предохранители, подклейте к выходу нагрузки вольтметр и включите автотрансформатор в штатную сеть 220 В. Трансформатор при правильной сбор ке работает тихо, практически бесшумно. Вращая за якорь двигатель, установите по вольтметру напряжение 220 В. Отключите стабилизатор от сети и поставьте на место предохранители. Переведите тумблер ‘Ручной/автоматический’ в положение ‘Ручной’. Движок резистора R2 установите в нижнее по схеме положение, a R4 — в верхнее. Подключите питание и с помощью кнопок SB2 и SB3 установите по вольтметру напряжение 250 В. Переведите тумблер SB4 в положение ‘Автоматический’ и вращением ручки R2 добейтесь срабатывания устройства на верхнем пределе. Переключите снова SB4 в положение ‘Ручной’ и установите по вольтметру напряжение на выходе 210 В. Переведите SB4 в положение ‘Автоматический’ и подстроечни-ком R4 добейтесь срабатывания устройства на нижнем пределе. Теперь можно проверить работоспособность стабилизатора по своему прямому назначению. Подключите к зажимам ‘Нагрузка’ лампу мощностью в 1 кВт, и стабилизатор должен ‘отреагировать’ на нагрузку переводом ползунка в другое положение. Теперь путем многократного быстрого в ключения-выключения лампы убедитесь, что двигатель не ‘дергается’, в противном слу-чае подберите точнее конденсаторы С2 и СЗ. Переведите тумблер в положение ‘Ручной’ и по вольтметру установите напряжение 100 В. Подведите концевой выключатель SQ1 до срабатывания и укрепите его. Нажмите одновременно кнопки SB1 и SB5 и установите напряжение 300 В. Переведите концевик SQ2 до срабатывания и укрепите его в этом положении. Нажмите кнопки SB1 и SB2, установите по вольтметру напряжение 220 В и переведите тумблер в положение ‘Автоматический’. Устройство полностью готово к работе! Можно подключать к генератору.

При регулировке и наладке устройства будьте внимательны и осторожны, т.к. элементы схемы находятся под опасным для жизни человека напряжением! После наладки и подгонки стабилизатора установите его в ящик подходящих размеров. На переднюю панель выведите индикаторные лампы, вставленные в глазки. НL1 зеленого цвета, HL2 и HL3 — желтого цвета, HL4 красного цвета. На переднюю панель также следует вывести кнопки SB1-SB3 и тумблер SB4. Плату с установленными деталями (монтаж навесной и выполнен проводом ПЭВ1 диаметром 0,1. 0,2 мм) установите на боковой стенке регуляторами наружу. Зажимы подключения генератора и нагрузки рекомендую вывести на боковые стенки. Шкаф, ветровую установку и генератор нужно заземлить. Сопротивление заземления должно быть не более 2 Ом.

1. Дробница Н.А. Автоматика в быту. — К.: Техника, 1984.

2. Терещук Р.М, Терещук КМ, Седов С.А. Полупроводниковые приемно-усилитель — ные устройства. — К: Наукова душа, 1987.

3. Бунин С Г., Яйленко ЯП. Справочник радиолюбителя-коротковолновика. — К: Техника, 1984.

Источник

Как сделать контроллер для ветрогенератора своими руками

Опубликовано Артём в 14.04.2019 14.04.2019

Альтернативная энергия, добываемая посредством «ветряной мельницы» — заманчивая идея, охватившая огромное число потенциальных потребителей электричества. Что же, электромехаников разного калибра, пытающихся сделать ветрогенератор своими руками, можно понять. Дешёвая (практически бесплатная) энергетика всегда ценилась на вес золота. Между тем установка даже простейшего домашнего ветрогенератора даёт реальную возможность получить бесплатный ток. Но как сделать домашний ветрогенератор своими руками? Как заставить работать систему энергии ветра? Попробуем раскрыть занавес тайны с помощью опыта бывалых электромехаников.

Что такое контроллер заряда?

Функцию контроля за величиной заряда выполняет балластный регулятор, или контроллер. Это электронное устройство, отключающее аккумулятор при возрастании напряжения, или сбрасывающее излишки энергии на потребитель — ТЭН, лампу или иной простой и нетребовательный к некоторым изменениям питания прибор. При падении заряда контроллер переключает АКБ в режим заряда, способствуя восполнению запаса энергии.

Первые конструкции контроллеров были простыми и позволяли только включать торможение вала. Впоследствии функции устройства были пересмотрены, и лишнюю энергию начали использовать более рационально. А с началом использования ветрогенераторов в качестве основного источника питания для дачных или частных домов проблема в использовании лишней энергии отпала сама собой, так как в настоящее время в любом доме всегда найдется, что подключить.

Существуют разные конструкции контроллеров. Можно приобрести готовый прибор, изготовленный в производственных условиях и точно выполняющий свои функции. Но чаще владельцы самодельных ветряков предпочитают собирать контроллеры самостоятельно, что обходится гораздо дешевле, проще ремонтируется и намного понятнее, чем устройство заводского изготовления.

Основа домашнего ветрогенератора

Тема изготовления и установки самодельных ветряных генераторов очень широко представлена в сети Интернет. Однако большая часть материала – это банальное описание принципов получения электрической энергии от природных источников.

Читайте также:  Стабилизатор напряжения 380в 150 квт

Теоретическая методика устройства (установки) ветрогенераторов уже давно известна и вполне понятна. А вот как обстоят дела практически в бытовом секторе – вопрос, раскрытый далеко не полностью.

Чаще всего в качестве источника тока для самодельных домашних ветрогенераторов рекомендуют выбирать автомобильные генераторы или асинхронные двигатели переменного тока, дополненные неодимовыми магнитами.

Процедура переделки асинхронного электродвигателя переменного тока под генератор для ветряка. Заключается в изготовлении «шубы» ротора из неодимовых магнитов. Крайне сложный и долговременный процесс

Однако оба варианта требуют существенной доработки, нередко сложной, дорогостоящей, отнимающей много сил и времени.

Куда проще и легче во всех отношениях установить электродвигатели, подобные тем, что выпускались прежде и выпускаются теперь фирмой Ametek (пример) и другими.

Для домашней ветрогенераторной установки подходят моторы постоянного тока напряжением 30 – 100 вольт. В режиме генератора от них можно получить примерно 50% от заявленного рабочего напряжения.

Следует отметить: при работе в режиме генерации электродвигатели постоянного тока требуется раскручивать до скорости выше номинальной.

При этом каждый отдельно взятый мотор из десятка одинаковых экземпляров, может показывать совершенно разные характеристики.

Поэтому оптимальный подбор электродвигателя к домашнему ветрогенератору логичен при следующих показателях:

  1. Высокий параметр рабочего напряжения.
  2. Низкий параметр RPM (угловая скорость вращения).
  3. Высокое значение рабочего тока.

Так, удачным под установку выглядит мотор производства фирмы Ametek с рабочим напряжением 36 вольт и угловой скоростью вращения — 325 об/мин.

Именно такой электродвигатель используется в конструкции ветрогенератора – установки, что описана ниже в качестве примера домашнего ветряка.

Мотор постоянного тока для домашнего ветрогенератора. Оптимальный вариант из числа продуктов, изготовленных фирмой Ametek. Также удачно подходят подобные электродвигатели производства других фирм

Проверить эффективность любого похожего мотора несложно. Достаточно подключить к электрическим выводам обычную автомобильную лампу накаливания на 12 вольт и крутануть вал мотора рукой. При хороших технических показателях электродвигателя лампа обязательно зажжётся.

Устройство и принцип работы

Одним из простых вариантов сборки контроллера является использование автомобильного реле-регулятора. Это устройство само по себе уже является готовым контроллером, дополнительных элементов для создания нужного прибора требуется совсем немного. Использовать только одно реле нельзя, поскольку оно не рассчитано на высокую частоту срабатываний и сразу выйдет из строя.

Генератор

Генератор является сердцем проекта и важно взять хороший! Сейчас вы смотрите на промышленный двигатель с постоянным магнитом. Он был куплен примерно за 65$, пришел с просверленной ступицей для крепления лопастей ветровой турбины, что сохранило мне много времени, которое было бы потрачено на просверливание отверстий.Мотор рассчитан на 90В при 1750 оборотов в минуту. Используя его в качестве генератора, эффективность данной системы составит 80%. Поэтому при вращении вала со скоростью 1750 оборотов за минуту, он будет производить 72В электричества. Посмотрим правде в глаза, вал не будет крутится с такой скоростью, но можно прийти к консенсусу. Для того, чтобы зарядить 12В батарею глубоким циклом заряда, генератор должен производить по крайней мере 12В. Воспользуемся математикой для расчета необходимой скорости вращения. Вал должен вращаться как минимум 233 оборота в минуту для зарядки 12В батареи.

С пластиковыми лопастями при 24 км/ч ветер легко вращает вал 233+ оборотов в минуту, что позволит заряжать батареи.

Схемы балластного регулятора

Существует несколько базовых схем контроллеров, имеющих собственную специфику:

Прерывание по минусовому контакту

Нагрузка через транзистор подается на реле. Оно пропускает ток до достижения максимального заряда, но как только нужное значение будет достигнуто (автомобильное ВАЗовское реле отсекает 14,5 В), то реле отключает минус, а транзистор открывается и пропускает ток на балласт. Как только напряжение упадет, транзистор закрывается, а реле вновь соединяет минус и начинается зарядка АКБ. В качестве балластного потребителя обычно используется обычная лампочка.

Прерывание по плюсу

Эта схема намного проще, но действует не менее эффективно. При использовании плюсового контакта в качестве управляющего транзисторы обычно заменяют твердотельным реле типа GTH6048ZA2 или подобного. Соединение генератора и АКБ получается прямым, как и контроллер. При превышении заряда устройство автоматически подключает нагрузку к аккумулятору, обеспечивая расход излишнего заряда. При достижении критического напряжения 14,5 В реле-регулятор включает твердотельное реле, подключающее нагрузку. Схема проста и поэтому она весьма надежна.

Усложнённый вариант схемы контроллера

Этот вариант применяется для трехфазных генераторов. Схема намного сложнее, так как в ней используются микросхемы и дополнительные элементы, обеспечивающие их работу. В качестве балласта используется нихромовый резистор, намотанный на керамике.

Принцип действия устройства состоит в выпрямлении полученного от генератора трехфазного тока, который через реле поступает на микросхему. При понижении напряжения триггер переключает схему в режим загрузки, при повышении — включается балласт, отбирающий лишний заряд. Можно собрать схему как для 12, так и для 24-вольтовых устройств.

Внимание! В настоящее время на рынок поступило множество китайских контроллеров, вполне доступных по цене и способных работать с разными устройствами от 12 до 30 В. Они вполне функциональны и способны избавить от самостоятельной сборки с неясным результатом.

Лопасти

Вместо того, чтобы тратить сотни долларов на лопасти для ветрового генератора, они были сделаны из пластиковых труб, что валялись в гараже.

Читайте также:  Стойки стабилизатора форд фокус 2 pilenga

Все говорят о том, что лучше использовать трубы диаметром 20 см для лопастей ветрогенератора. Позвольте мне сказать о том, что они действительно работают гораздо лучше чем трубы 15 см. Но так как в моем распоряжении были 15 см трубы, к вопросу нужно было бы подойти творчески (у них меньшая кривизна чем у 20 см).

Приступаем к резки ПВХ трубы. Сделаем прямоугольники размерами 14 на 61 см. Затем вырежьте из них треугольники, где короткий катет в длину 3 см.

После того, вырежем на конце лопасти треугольник, с помощью его она будет крепится на ступицу генератора.

  • Используйте металлический угольник, для маркировки мест, что необходимо вырезать (угольник поможет получить прямые линии).
  • Вы можете использовать ручную пилу, но рекомендую взять «сабельную пилу».
  • Используйте пилки предназначенные для стали (мелкие зубья).

Лопасти — продолжение

Для того, чтобы доработать трубу 15 см, была добавлена конструкция. На фотографиях показано, что была использована стальная садовая окантовка с просверленными отверстиями для продления длины лопастей.

Зажмем окантовку в тисках, для того чтобы подравнять поверхность и просверлить отверстия, чтобы они были приблизительно в одном месте.

Наиболее важной частью этого все было то, что вставки были наклонены относительно лопастей под углом 30-45 градусов к ступице, позволяя ветру толкать их боком, нежели назад, снимая при этом лишнее напряжение с натяжных тросов и основания, и производить больше электроэнергии.

Добавляем флюгер

Перед тем как начать работу по производству флюгера, рекомендую покрасить 122 см квадратную трубу. В моем случае она была не оцинкованной и поэтому поржавела в течении нескольких месяцев, поэтому приходилось все разбирать заново, шлифовать и красить.

Отметьте линию, ниже центра на 2.5 см квадратной трубы, сделайте разрез с одного края длиной в 30 см.

Просверлите два отверстия через трубу и лист стали, скрутите все это вместе.

Установка генератора

Во-первых, установите мотор на верху квадратной трубы (мотор должен быть на одном уровне с концом трубы). Просверлите отверстие для шнура питания. Рекомендую просверлить отверстие большего диаметра, чтобы убедится в том, что металл не врезается в провод. Следующей операцией будет прикрепление 3 см фланца к квадратной трубе. Фланец должен находится сзади того места, где смонтирован двигатель (это все должно быть довольно близко к друг другу, для балансировки точки равновесия трубы). Просверлите два отверстия и прикрутите фланец к трубе. Просверлите третье отверстие в центре фланца для провода, чтобы пропустить его внутри по флагштоку. Заправьте провод от мотора во внутрь через оба отверстия, что вы просверлили и прикрепите мотор к трубе используя большие хомуты (убедитесь в том, что хомуты плотно затянуты).

Примечание: мотор, что использовался в проекта был с штепсельной вилкой на конце шнура, но мне пришлось его удалить для того, чтобы продеть его через трубу.

После того, как все это сделано проденьте трубу диаметром 3 см во фланец. Используем трубу длиной 61 см. Она будет выступать в качестве основы для ветрогенератора.

Фундамент

По моему личному опыту рама основания просто уложенная на землю не является хорошей опорой при сильном ветре и не защищает ветрогенератор от опрокидывания, повреждая при этом как саму установку, так и лопасти генератора. Для этого чтобы выдерживать сильные ветры без проблем, нужно вырыть фундамент и залить его раствором в ключевых местах. Разместив в основании стальную трубу и выройте яму вокруг её.

Налейте раствор вокруг 4 вертикальных труб, остаток распределили по своему усмотрению. Может быть, было бы более эффективно сделать фундамент для основы, но это уже идея для другого проекта.

Как только все окажется в земле, наружная труба будет торчать не слишком далеко от земли. Главная труба турбины иметь внутреннею резьбу, поэтому возьмем 2,5 см тройник для соединения труб. Это служит двойной целью: скрепляющий элемент, через него проходит провод от генератора.

Примечание: шнур, что использовался в проекте, был отрезан он старого удлинителя.

Растяжки

Для растяжек первоначально использовался высокопрочных паракорд, но он лопнул при сильном ветре, поэтому было принято решение перейти на плетеный трос, что шёл в комплекте с прочными крепежными винтами. Прикрепив их к главной трубе с помощью двух заземляющих зажимов. Зажимы оснащены болтами, но заменим эти болты на карабины, таким образом растяжки могут быть быстро сняты.

Зарядка батарей

Ветряк заряжает две батареи, что соединены параллельно. Просто подсоединяем контакты генератора к клеммам батарей, при этом стоит впаять диод в провод питания, чтобы убедится в том, что электричество не пойдет от батареи к мотору, вращая его словно вентилятор, также необходимо установить контроллер заряда. Это беспроигрышный вариант для тех, у кого нет возможности часто проверять заряд батарей.

Рекомендую также приобрести к установке нагрузочное сопротивление. Контроллер будет перенаправлять электрический ток, от генератора к сопротивлению, когда батареи полностью заряжены. Необходимо убедится в том, что ветрогенератор всегда должен быть под нагрузкой, для предотвращения выхода из строя мотора. В моем случае нагрузочное сопротивление не выполняет своей функции по той причине, что мои батареи никогда не заряжаются полностью (они всегда под нагрузкой).

Проводка в моем проекте выглядит ужасно, но не переживайте в интернете полно схем подключения контроллера заряда.

Кол-во блоков: 15 | Общее кол-во символов: 14638
Количество использованных доноров: 3
Информация по каждому донору:

Источник