Меню

Стабилизатор напряжения для ветрогенераторов

Прочее

Мощный стабилизатор напряжения ветрогенератора

В предложенной статье приводится описание стабилизатора, который вот уже около трех лет верой и правдой совместо с ветрогенераторной установкой практически круглый год обеспечивает меня электричеством. Он может также использоваться и для стабилизации напряжения в обычной сети.

При постройке ветрогенераторной установки на базе асинхронного электродвигателя с короткозамкнутым ротором возникла необходимость в мощном трехфазном стабилизаторе напряжения мощностью более 2 кВт. Напряжение на генераторе ‘прыгало’ при сильном ветре до 500 В, а при слабом опускалось до 100 В. В итоге были разработаны и испробованы несколько типов стабилизаторов разной конструкции и сложности. Самой простой и надежной в работе оказалась конструкция однофазного стабилизатора мощностью 2 кВт, но при небольших доработках его можно переделать в трехфазный практически на любую мощность (до 32 кВт!).

Главным достоинством стабилизатора является большая мощность, высокий КПД, относительно низкая стоимость, широкий диапазон регулируемых напряжений. К недостаткам относится достаточно большая инерционность, из-за чего невозможно компенсировать быстрые изменения напряжения. Такой недостаток легко устраняется конструкцией самого ветрогенератора.

Напряжение с генератора или сети поступает на регулируемый автотрансформатор, ползунок которого перемещается с помощью электромотора с червячным редуктором С автотрансформатора снимается напряжение для питания нагрузки, блока питания устройства, а также на выпрямитель следящею устройства (устройства управления УУ). После обработки поступившего напряжения подается сигнал на включение-выключение электромагнитных ключей, которые управляют работой электромотора. При этом индикаторы показывают величину выходного напряжения. Блок питания обеспечивает устройство нужными напряжениями питана: для индикаторов, электрических ключей и мотора +18 В для устройства управлениях +5 В.

Электрическая принципиальная схема стабилизатора показана на рис.1 . Переменное напряжение через концевые выключатели SQ1, SQ2 поступает на автотрансформатор Т1. С движка автотрансформатора напряжение снимается на питание нагрузки, трансформатора блока питания и на диодный мост V1-V4. С диодного моста выпрямленное напряжение поступает на делитель R1-R4. Если напряжение на выходе автотрансформатора в пределах 210. 230 В, то транзистор V9 закрыт, а транзистор V7 открыт и на выходах элементов DD1.2 и DD1.5 присутствует лог.’1′, транзисторы V10 и V11 закрыть, реле К1 и К2 обесточены, двигатель M1 обесточен и светится индикаторная лампа HL1 ‘Норма’. В таком состоянии устройство находится в дежурном режиме до тех пор, пока напряжение на автотрансформаторе не выйдет за установленные рамки. При повышении напряжения выше 230 В открываются стабилитрон V8 и транзистор V9, на выводе 10 элемента DD1.5 появляется лог.’1′ и открывает транзистор VТ1. Срабатывает реле К2, своими контактами К2.1 отключает лампу HL1, а контактами К2.2 зажигает лампу HL2 ‘Много’. Контактами К2.3 включает двигатель M1, который передвигает ползун автотрансформатора до тех пор, пока напряжение на ползуне не станет меньше 230 В. При этом напряжение на стабилитроне V8 станет меньше напряжения стабилизации, транзисторы V9 и V11 закроются, реле обесточится, лампа HL2 погаснет, а НL1 загорится. Контакты К2.3 переключатся в исходное положение и замкнут обмотку якоря накоротко, вследствие чего будет произведено быстрое торможение пол-

Технические характеристики стабилизатора

Максима л ьноя выходная мощность. 2000 Вт

Напряжение стабилизации. 220 В

Диапазон изменения входного напряжения. 100. 300 В

Диапазон изменения выходного напряжения. 210. 230 В

Время установки напряжения на выходе стабилизатора

при изменении входного напряжения на 10 В. 0,2. 0,4 с

Рис.1 Электрическая схема стабилизатора напряжения

зуна. Если напряжение станет меньше 210В, то стабилитрон V5 закроет транзистор V7, на выводе 4 элемента DD1.2 появится высокий уровень, который откроет транзистор VI0 и включит реле К1. При этой погаснет лампа НИ и загорится лампа HL3 ‘Мало’. Контактами К 1.3 включится электродвигатель Ml и увеличит напряжение на автотрансформаторе до тех пор, пока не откроется стабилитрон V5. После чего транзистор V7 откроется, а V10 закроется. Обесточится реле К1, погаснет лампа HL2, и загорится НL1. Контакты К 1.3 переключатся, и двигатель M1 быстро затормозит. Если напряжение на генераторе сильно увеличится или уменьшится (300 и 100 В соответственно), то ползун нажмет концевой выключатель SQ1 (при напряжении 300 В) или SQ2 (при напряжении 100 В) и подача напряжения полностью прекратится, при этом будет гореть пампа HL4 ‘Авария питания’. Снять аварию можно только после того как будет устранена причинa аварии и полностью отключена нагрузка путем нажатия на 5 секунд кнопки SB1 ‘Сброс аварии’. И только после того, как напряжение на стабилизаторе полностью установится, можно включить нагрузку. Элементы R10, С2 и R11, С5 необходимы для устранения ‘влияния’ двигателя и реле во время коротких скачков напряжения. Кнопками SB2 и SB3 можно управлять стабилизатором вручную, только при этом нужно переключить тумблер SB4 в положение ‘Ручное управление’. Блок питания построен по стандартной схеме и в пояснении не нуждается. Единственное, что нужно пояснить, так это роль диода V16. Он выполняет функцию фильтра, т.е. уменьшает влияние реле и двигателя на работу устройства управления.

Читайте также:  Инверторный стабилизатор напряжения 220в штиль 550

Для изготовления автотрансформатора нужно взять сталь из статора 3-киловаттного асинхронного электродвиателя и обмотал двумя-тремя слоями лакоткани. После чего намотать плотно виток к витку изолированный медный провод диаметром 1,5 мм. Оставшийся конец провода хорошо заизолировать и приклеить к трансформатору клеем ‘Момент’ или ‘БФ2’. Отвод сделать от последней трети витков. В верхней части трансформатора, где будет двигаться ползун, с помощью наждачной бумаги уберите слой лака. После чего залейте всю конструкцию нитролаком, кроме, конечно, зачищенного участка, и дайте лаку полностью высохнуть. Пока трансформатор сохнет выпилите из гетинакса или плексигласа чуть больше диаметра трансформатора основание и крышку. В крышке сделайте отверстие по центру и установите мотор с редуктором. На вал редуктора наденьте через изоляционную трубку ползунок. Сам ползунок взят из ЛАТРа типа ПОСН-2-220-82, только пришлось немного удлинить поводок. Теперь поставьте трансформатор на основание, наденьте сверху крышку и скрепите все шпильками. Вставьте трансформатор по центру и укрепите его с боков резиновыми вставками. Концевые выключатели установите на верхней крышке так, чтобы ползунок привода ж в действие. SQ1 нужно установить в самом конце намотки, SQ2 — в конце первой трети намотки. Будьте предельно внимательны, когда будете зачищать место для поводка, чтобы не замкнуть витки. Зачищать нужно только сверху провода, после чего обдуйте трансформатор сжатым воздухом под давлением 3. 3.5 кгс/см 2 . Автотрансформатор готов! Как уже было сказано выше, трансформатор нужно мотать проводом марки ПЭВ1 или ПЭЛ плотно виток к витку по внутреннему диаметру, а снаружи укладывать с равномерным шагом в один слой.

Детали. В стабилизаторе можно использовать сопротивления МЛТ, ОМЛТ мощностью 0,25 Вт. Резисторы R1, R2 типа МЛТ мощностью 2 Вт. Диоды V1-V4, V12-V15 любые на рабочее напряжение не ниже 400 В и обратный ток 1 А Реле ТКЕ54ПД1 с обмоткой на 24 В, электродвигатель с червячным редуктором взят от стеклоочистителя автомобиля ГАЗ-53. Трансформатор Т2 любой с выходным напряжением 18 В и мощностью 120 Вт. Микросхема К155ЛН1 или К133ЛН1. Транзисторы V7-V9 типов КТ315В, КТ312Б, КТ3102; VI0, VI1 типов КТ815А, КТ817А. Концевые выключатели Д701. Кнопки SB1-SB3 любые с автовозвратом. Тумблер SB4 типа МП, МТ2. Подстроечные сопротивления типа СПЗ-1Б. Конденсаторы С1, С5, С7 типов К21-8, КЛС и т.д, С2-СЗ типа К10-7В, С4 типа К50-3, К50-ЗВ на напряжение 50 В; С6 шпа К50-18, К50-24 емкостью 8000 мкФх50 В. Лампы накаливания КН24-90, КХЛ4. Неоновая лампа типа ИН1, ИН2 или любая другая.

Рис.2 Структурная схема стабилизатора напряжения

Наладка. Прежде всего проверьте качество монтажа и правильность всех соединений. Удалите из держателей предохранители, подклейте к выходу нагрузки вольтметр и включите автотрансформатор в штатную сеть 220 В. Трансформатор при правильной сбор ке работает тихо, практически бесшумно. Вращая за якорь двигатель, установите по вольтметру напряжение 220 В. Отключите стабилизатор от сети и поставьте на место предохранители. Переведите тумблер ‘Ручной/автоматический’ в положение ‘Ручной’. Движок резистора R2 установите в нижнее по схеме положение, a R4 — в верхнее. Подключите питание и с помощью кнопок SB2 и SB3 установите по вольтметру напряжение 250 В. Переведите тумблер SB4 в положение ‘Автоматический’ и вращением ручки R2 добейтесь срабатывания устройства на верхнем пределе. Переключите снова SB4 в положение ‘Ручной’ и установите по вольтметру напряжение на выходе 210 В. Переведите SB4 в положение ‘Автоматический’ и подстроечни-ком R4 добейтесь срабатывания устройства на нижнем пределе. Теперь можно проверить работоспособность стабилизатора по своему прямому назначению. Подключите к зажимам ‘Нагрузка’ лампу мощностью в 1 кВт, и стабилизатор должен ‘отреагировать’ на нагрузку переводом ползунка в другое положение. Теперь путем многократного быстрого в ключения-выключения лампы убедитесь, что двигатель не ‘дергается’, в противном слу-чае подберите точнее конденсаторы С2 и СЗ. Переведите тумблер в положение ‘Ручной’ и по вольтметру установите напряжение 100 В. Подведите концевой выключатель SQ1 до срабатывания и укрепите его. Нажмите одновременно кнопки SB1 и SB5 и установите напряжение 300 В. Переведите концевик SQ2 до срабатывания и укрепите его в этом положении. Нажмите кнопки SB1 и SB2, установите по вольтметру напряжение 220 В и переведите тумблер в положение ‘Автоматический’. Устройство полностью готово к работе! Можно подключать к генератору.

Читайте также:  Стабилизатор бензина для лодочного мотора

При регулировке и наладке устройства будьте внимательны и осторожны, т.к. элементы схемы находятся под опасным для жизни человека напряжением! После наладки и подгонки стабилизатора установите его в ящик подходящих размеров. На переднюю панель выведите индикаторные лампы, вставленные в глазки. НL1 зеленого цвета, HL2 и HL3 — желтого цвета, HL4 красного цвета. На переднюю панель также следует вывести кнопки SB1-SB3 и тумблер SB4. Плату с установленными деталями (монтаж навесной и выполнен проводом ПЭВ1 диаметром 0,1. 0,2 мм) установите на боковой стенке регуляторами наружу. Зажимы подключения генератора и нагрузки рекомендую вывести на боковые стенки. Шкаф, ветровую установку и генератор нужно заземлить. Сопротивление заземления должно быть не более 2 Ом.

1. Дробница Н.А. Автоматика в быту. — К.: Техника, 1984.

2. Терещук Р.М, Терещук КМ, Седов С.А. Полупроводниковые приемно-усилитель — ные устройства. — К: Наукова душа, 1987.

3. Бунин С Г., Яйленко ЯП. Справочник радиолюбителя-коротковолновика. — К: Техника, 1984.

Источник

Новая версия контроллера (балластного регулятора напряжения) для ветрогенератора

В прошлых статьях я уже описывал схему изготовления контроллера для ветрогенератора на основе автомобильного реле-регулятора (РР). Также в тех статьях есть фото и видео работы этого балластного регулятора. Принцип работы очень простой, реле-регулятор автомобильный при 14.2 вольта отключает щетку генератора и он перестаёт заряжать аккумулятор в автомобиле и таким образом АКБ не перезаряжается. А для работы с ветрогенератором сигнал от РР используется для включения дополнительной нагрузки к АКБ, которая сжигает лишнюю энергию и не даёт напряжению выросли выше 14.2 вольта.

В оригинальной схеме балласт подключается с помощью транзистора. Реле-регулятор подключается к АКБ и пока напряжение ниже 14.2 вольта, то РР подаёт минусовое напряжение не затвор транзистора и он закрыт. А как только напряжение на АКБ достигнет 14.2 вольта, то РР отключает минус и транзистор открывается, и через него идет ток на балласт. При этом РР работает очень быстро и держит напряжение 14.2 вольта, оно несколько раз в секунду открывает и закрывает транзистор обеспечивая плавный отбор лишней мощности. И собственно по этому нельзя в этой схеме использовать обычное контактное реле, оно просто не выдержит частоту включения-выключения 10. 100Гц, будет сильно дребезжать контактами пока они не отгорят.

Сама схема выглядит вот так (ниже рисунок) дополнительное описание — Балластный регулятор для ветрогенератора схема и описание

Если у вас нет реле-регулятора с управлением по минусу то можно сделать балластный контроллер на основе реле генератора ВАЗ, и других автомобилей где реле отключает плюсовую щётку генератора и об этом далее.

Контроллер на реле ВАЗ, с управлением по плюсу

Ниже рисунок со схемой балластного контроллера с реле генератора ВАЗ. Так как выход реле на щётку плюсовой, то есть она отключает плюс, а не минус как реле ГАЗ, то нужно ставить два транзистора.

Читайте также:  Стабилизатор напряжения powerman avs 2000s инструкция

Когда напряжение ниже 14.2В то плюсовое напряжение подаётся на контакт «Ш», оно подаётся на затвор первого транзистора и он открывается (резистор затвора на минус подключается). Далее этот транзистор подаёт через себя минус (исток-сток) на затвор второго транзистора, и тот минусом закрывается, и через себя не пропускает минус на балласт.

А когда напряжение поднимается выше 14.2В то плюс пропадает с выхода реле регулятора. Первый транзистор закрывается разряжая затвор через резистор на минус. И на затвор второго транзистора перестаёт поступать минус, и он открывается заряжается затвор через резистор от плюса. И он на балласт подаёт минус, балласт включается. Ниже рисунок схемы на двух транзисторах и реле ВАЗ.

Из минусов такой схемы это некоторая сложность с подключением транзистора, хотя куда ещё проще, но всё-таки многие не могут и у них не получается. А так-же бывает что транзисторы сгорают, не понятно из-за чего, но такое случалось не только у меня. Вдаваться в описание возможных причин не будем, в общем я нашёл другой выход, и об этом далее.

Твёрдотельное реле вместо транзистора

Транзистор в схеме, которая выше я заменил на твёрдотельное реле и всё стало гораздо проще и надёжнее. Теперь для сборки самого контроллера надо приобрести всего две детали, ну ещё маленькую светодиодную лампочку и балласт. Принципиально схема выглядит вот так (ниже рисунок).

Для изготовления понадобятся:
1. Реле-регулятор любой с управлением по плюсу, это регуляторы ВАЗ например
2. Твёрдотельное реле на постоянный ток
3. Резистор или светодиодную лампочку маломощную
4. Балласт, в качестве которого лампочки или большой резистор

Ветрогенератор подключается напрямую на аккумулятор и с балластным контроллером никак не связан. А сам контроллер подключается тоже к аккумулятору, но с ветряком никак не связан, он просто отслеживает напряжение аккумулятора и при превышении 14.2 вольта включает балласт чтобы остановить рост напряжения и сжечь лишнюю энергию. Поэтому не важно что заряжает аккумулятор, это может быть ветрогенератор, солнечные батареи, или зарядное устройство, контроллер всё равно будет включать балласт при превышении 14.2 вольта. Таким образом можно излишки энергии использовать даже с солнечных батарей, и эти излишки можно пустить на подогрев воды заменив лампочки на водонагревательный ТЭН.

И если говорить о работе самого контроллера, то балласт он включает не резко, а мягко, импульсами, отбирая только лишнюю энергию. Ветрогенератор при этом не получает удары мощной нагрузкой, как это бывает с другими контроллерами. Контроллеры с мощными балластами обычно полностью подключают нагрузку и происходит резкий удар по ветряку, и он начинает замедляться и пока напряжение АКБ не просядет до заданного гистерезиса ветряк будет нагружен мощной нагрузкой и останавливается. И когда акб заряжены то ветряк может получать несколько таких ударов балласта, от этого нагрузки большие на лопасти и подшипники, обмотку генератора. Так-же есть контроллеры, которые просто тормозят генератор при превышении напряжения, и они тоже резко включают торможение практически замыкая генератор, что тоже очень плохо. А этот балластный регулятор работает как ШИМ(PWM) контроллер мягко скидывая только излишки на балласт, только здесь импульсный принцип работы.

Кстати потребление контроллера совсем небольшое, порядка 20мА, и реле твёрдотельное включается только во время скидывания лишней энергии и в отличие от контактных реле потребляет всего 15мА.

Для наглядности работы данной схемы контроллера я записал небольшое видео. На видео реальная работа контроллера с реальным ветрогенератором. Правда в в день съёмки ветерок был совсем небольшой, поэтому чтобы было видно как происходит сброс лишней энергии я отключил две из трёх лампочек балласта, чтобы было видно по яркости свечения лампочки.

На этом всё, всем удачи в повторении подобной конструкции балластного регулятора для ветряка. Ниже несколько фото этого контроллера.

Дополнительная информация по схеме и описания работы в других статьях:

Источник