Меню

Стабилизатор напряжения 220в с сервоприводом

Электромеханический (сервоприводный) стабилизатор напряжения

Электромеханический стабилизатор напряжения, так же известный как сервоприводный, – это один из самых распространенных видов стабилизаторов, который, благодаря своей конструкции и характеристикам, обладает очень интересным набором возможностей и в некоторых ситуациях просто не имеет альтернативы.

Давайте подробнее рассмотрим, как работает сервоприводный стабилизатор, как он устроен, какие у него сильные и слабые стороны и многое другое об этом устройстве.

Устройство электромеханического стабилизатора

Главным элементом любого электромеханического стабилизатора напряжения является регулируемый автотрансформатор (обязательно читайте нашу статью о нём), перемещение подвижного контакта по его обмотке выполняется автоматически, с помощью сервопривода.

Так же в стабилизаторе обязательно имеется блок управления – небольшая плата с определенным набором компонентов. Кроме этого, конечно же, есть коммутационные провода, предохранители, индикаторы и другие вспомогательные мелкие элементы, без которыз работы любого электроприбора невозможна.

Схема электромеханического стабилизатора

На укрупненной схеме сервоприводного стабилизатора, по которой можно легко понять принцип его работы, отражены оба основных компонента и их взаимодействие:

1. Регулируемый автотрансформатор

Принцип работы электромеханического стабилизатора

Принцип действия сервоприводного стабилизатора напряжения легко понять зная, как работает регулируемый автотрансформатор. Если коротко, то получается следующее:

1. Электрический ток поступает из сети, на плату управления, где встроенный вольтметр измеряет его напряжение.

2. В зависимости от полученных результатов подаётся сигнал на сервопривод, который перемещает подвижный контакт по обмотке, тем самым меняя коэффициент трансформации автотрансформатора, пока на выходе не будет 220В. Или, проще говоря, изменяется количество витков первичной обмотки, при этом вторичная обмотка не изменняется.

Как видите, конструкция довольно простая, а как известно, чем меньше разнообразных элементов участвуют в работе, тем выше общая надежность устройства. Давайте же рассмотрим все основные достоинства и недостатки электромеханического стабилизатора напряжения.

Плюсы и минусы электромеханического стабилизатора напряжения

— Невысокая стоимость

Сервоприводные модели одни из самых доступных видов стабилизаторов из существующих, в частности благодаря простоте своей конструкции. Обычно, они продаются по цене лишь не на много более высокой, чем релейные стабилизаторы, при этом обладают рядом недостижимых для релейных моделей характеристик.

— Высокая точность стабилизации

Благодаря тому, что механический стабилизатор не имеет фиксированных отводов от автотрансформатора, а может сам формировать нужное количество витков обмотки и соответственно достаточно гибко изменять коэффициент трансформации, точность стабилизации получатся очень высокой.

— Плавная стабилизация

Так как изменение положения подвижного контакта производится с помощью сервопривода, который плавно перемещает его по обмотке регулируемого автотрансформатора — не происходит резких скачков напряжения и даже кратковременного обрыва контакта, чего очень боятся чувствительные электронные компоненты электрооборудования.

— Устойчивость к кратковременным перегрузкам

Конструкция механического стабилизатора позволяет ему кратковременно выдерживать скачки напряжения в сети, даже если оно увеличивается в два раза относительно номинального.

— Устойчив к помехам в напряжении, частоте и форме тока

Использование автотрансформатора, как основного элемента стабилизации напряжения, позволяет не бояться изменений частоты и формы тока.

— Компактность

Минимальное количество используемых в механическом стабилизаторе компонентов, позволяет сделать его достаточно компактным. Его размер формируется в большей степени из размера регулируемого автотрансформатора.

— Высокий коэффициент полезного действия (КПД)

На некоторых форумах и информационых ресурсах, рассказывающих о электромеханических стабилизаторах, встречается мнение, что они имеют низкий КПД, но это не так. Практически все виды стабилизаторов в основе которых лежит автотрансформатор: релейные, механические, теристорные, симисторные, гибридные, имеют достаточно высокий КПД, 94-98%.

— Наличие движущихся деталей

Самым слабым узлом электромеханического стабилизатора является именно механизм перемещения контакта по обмотке, он очень чувствителен к загрязнениям и пыли, да и просто подвижные детали имеют наибольший естественный износ при работе. Данный недостаток автоматически порождает следующий.

— Необходимости регулярного технического обслуживания

Наличие движущихся деталей вынуждает периодически обслуживать сервоприводные стабилизаторы — чистить их, менять щетки и т.д. Отнести данные стабилизаторы к устройствам — купил, установил и забыл нельзя, они периодически требуют внимания к себе.

Передвижение щеток и работа сервопривода создают определенный шум, он не такой навязчивый и громкий как, например, щелчки при переключении релейного стабилизатора, но всё же ощутимый и создаёт некоторый дискомфорт, когда стабилизатор находится с вами в одной комнате.

— Скорость реагирования

Одним из самых значимых недостатков механических стабилизаторов является низкая скорость реагирования на изменения напряжение. Это и неудивительно, ведь сервопривод не может моментально передвинуть токосниматель по обмотке, на это ему требуется определенное время, у многих моделей изменение напряжения происходит всего по 10-15 вольт в секунду. Таким образом, если произойдет резкое падение входного напряжение сразу на 60 вольт, стабилизатор нормализуют его лишь через 4-6 секунд, всё это время электрооборудование будет работать при низком напряжении.

— Ограниченный диапазон рабочих температур

В среднем, рабочий диапазон сервоприводных стабилизаторов лежит в пределе -5 до +40 градусов. Таким образом количество мест, где возможно их применение или установка значительно ограничено.

— Боязнь пыли

Наличие подвижного токоснимателя и электродвигателя делают механический стабилизатор очень чувствительным к попаданию внутри него пыли, которая значительно увеличивает вероятность поломки. Из-за этого, например, нельзя устанавливать сервоприводные стабилизаторы на производстве, в цеху.

Где чаще всего используется электромехнический стабилизатор

Из всех перечисленных сильных и слабых сторон механического стабилизатора, чаще всего его выбирают именно из-за его высокой точности стабилизации при низкой цене. Одним же из ключевых недостатков, который вынуждает потребителей выбирать модели другого типа, является низкая скорость стабилизации.

Таким образом, чаще всего сервоприводный стабилизатор покупают тогда, когда требуется именно точность нормализации, а скорость не так важна.

Читайте также:  Нужно ли ставить стабилизатор напряжения в частный дом

Так, например, если у вас в квартире или на даче, стабильно низкое или высокое напряжение, при этом не бывает резких скачков или падений, а если и происходят изменения, то они достаточно плавные – вы смело можете брать электромеханический стабилизатор, он с высокой точностью выровняет входящее напряжение и ваше электрооборудование будет работать в максимально комфортных условиях.

Это особенно важно чувствительным к качеству напряжения в сети устройствам, например, измерительному оборудованию, лампам освещения, электроприборам в которых установлены электромоторы или происходит нагрев, циркуляционным насосам, холодильникам, стиральным машинам, электроинструменту и многим другим.

Так например стабилизаторы другого типа — релейные, имеют точность всего 8%, и даже при входящем напряжении в 205 Вольт передают его без изменений потребителям, которые нередко не рассчитаны на работу в таком режиме. Поэтому, если у вас в сети нет резких скачков или падений напряжения, оно постоянно низкое или высокое, стоит присмотреться к электромеханическим стабилизаторам, пусть они несколько дороже, но это с лихвой покрывает точность стабилизации.

Примеры удачных моделей электромеханических стабилизаторов

Если вы решили приобрести именно сервоприводный стабилизатор , для вас я, как обычно, выкладываю небольшой список удачных, на мой взгляд, моделей электромеханических стабилизаторов напряжения, которые я советую покупать своим клиентам. При этом я опираюсь как на собственный опыт, так и на мнение своих коллег, поставщиков и нередко читаю анонсы, обзоры и просто отзовы на форумах об этом оборудовании. В своих ценовых нишах они практически не имеют конкурентов, при этом доступны для покупки практически в любом уголке страны.

1. РЕСАНТА АСН-5000/1-ЭМ (

Ресанта один из самых распространенных на рынке и популярных у потребителя стабилизаторов напряжения. Производится в Китае. Подброее о его характеристиках и актуальной стоимости вы можете узнать по ссылке ниже.

2. ЭНЕРГИЯ NEW LINE 5000 (

5800 рублей)

Российский электромеханический стабилизатор ЭНЕРГИЯ АСН-5000, славится своей надежностью и неприхотливостью. Развитая диллерская сеть и сервисное обслуживаение.

3. Rucelf SDW.II-6000 (

Ну и конечно же стоит отметить Rucelf SRW.II-6000. Данный производитель, думаю, не требует представления, Rucelf выбирают за его надежность, точность и высокое качество.

А если вы знаете еще достойных производителей электромеханических стабилизаторов или просто удачные модели — обзательно пишите о них в комментариях. Кроме того, задавайте свои вопросы, делитесь мнением, оставляйте замечания, буду рад ответить всем.

Источник

Как выбрать стабилизатор 220 В, какой лучше: релейный, электронный, инверторный?

Мы в СтабЭксперт.ру прекрасно понимаем, как тяжелы проблемы выбора стабилизатора или любого другого оборудования, поэтому составили подробную статью, но очень простым языком.

Зачем этот прибор? Стабилизаторы напряжения служат для поддержания номинальных параметров электропитания в сети конечного пользователя. Необходимость их применения продиктована нестабильностью работы внешних электросетей, выраженной отклонениями, либо резкими изменениями (скачками) величины питающего напряжения.

Типы современных стабилизаторов

Существуют различные типы стабилизаторов, отличающихся устройством и принципом действия, с которыми желательно ознакомиться, прежде чем приступать к выбору прибора. К основным разновидностям стабилизаторов, представленным на рынке в настоящее время, относятся следующие типы:

  • электромеханические и электродинамические устройства с использованием сервопривода;
  • релейные;
  • электронные (тиристорные и симисторные);
  • гибридные;
  • инверторные.

Принцип работы стабилизаторов. В основу принципа работы первых трёх типов положен метод изменения коэффициента трансформации автотрансформатора.

Примечание. Автотрансформатор представляет собой вид трансформатора, в котором имеется только одна обмотка, различное число витков которой служат в качестве первичной и вторичной обмоток.

Плюсы и минусы разных типов стабилизаторов

Устройства с сервоприводом

В данном виде стабилизаторов, включающих в себя электромеханические и электродинамические приборы, реализовано плавное регулирование напряжения, которое осуществляется следующим образом. Часть витков обмотки автотрансформатора, намотанной на тороидальный сердечник, зачищается от изоляции с торцевой или боковой стороны сердечника, в зависимости от конструкции. На этом участке по обмотке перемещается токосъёмный контакт, через который осуществляется подключение первичной обмотки к сети питания.

Электродинамическая серия от итальянского бренда

Стабилизаторы с сервоприводом принято разделять на устройства электромеханического и электродинамического типа. Критерием разделения служит конструкция токосъёмного контакта. Стабилизаторы со скользящими контактами щёточного типа принято называть электромеханическими. К электродинамическому типу относят устройства, в которых при перемещении контакта происходит не скольжение, а качение, то есть, подвижный контакт представляет собой графитовый вращающийся ролик, который при движении сервопривода катится по обмотке. Очевидно, что никакой принципиальной разницы между электромеханическими и электродинамическими стабилизаторами не существует, поэтому данное разделение, честно говоря, выглядит не совсем оправданным.

Как работают? Нагрузка стабилизатора подключена к вторичной обмотке, имеющей фиксированное количество витков. Таким образом, при перемещении токосъёмного контакта изменяется количество витков первичной обмотки, то есть, происходит плавное изменение коэффициента трансформации. Управление движением контакта осуществляется специальным серверным электродвигателем, имеющим малую частоту вращения или оснащённым понижающим редуктором. В свою очередь, электродвигатель управляется электронным блоком, осуществляющим контроль выходного напряжения. При превышении напряжением установленной нормы, электронный контроллер формирует команду на вращение серводвигателя в направлении, соответствующем увеличению коэффициента трансформации, что приводит к нормализации вторичного напряжения. При понижении напряжения на нагрузке происходит обратный процесс. То есть, система регулирования всегда стремится к равновесному состоянию, при котором напряжение на нагрузке имеет номинальное значение.

Безусловным преимуществом электромеханических и электродинамических стабилизаторов является высокая точность стабилизации, достигающая 2 – 3 %. По этому параметру устройства с сервоприводом опережают релейные и электронные приборы.

Диапазон допустимого изменения значений питающего напряжения ограничивается за счёт того, что для токосъёма доступен только наружный слой обмотки автотрансформатора, что позволяет изменять коэффициент трансформации в ограниченных пределах. Высокая точность стабилизации, обусловлена способностью приборов с сервоприводом, плавно регулировать напряжение на выходе. Однако это свойство имеет и обратную сторону. Перемещение токосъёмного контакта происходит достаточно медленно, вследствие чего скорость реагирования электромеханических и электродинамических стабилизаторов на резкие скачки входного напряжения весьма значительно уступает аналогичным характеристикам приборов другого типа.

Читайте также:  За что служат стойки стабилизатора

Среди других недостатков электромеханических и электродинамических стабилизаторов следует упомянуть:

  • наличие движущихся частей, которое при прочих равных условиях снижает надёжность устройства;
  • постоянно движущийся по обмотке токосъёмный контакт подвержен механическому износу и обгоранию вследствие искрения, что к тому же исключает использование стабилизаторов с сервоприводом во взрывоопасных помещениях;
  • работающий сервопривод издаёт некоторый шум, что в зависимости от места установки прибора может вызывать ощущение дискомфорта.

Справедливости ради стоит добавить, что роликовый контакт электродинамических устройств существенно более устойчив к износу, чем скользящий контакт щёточного типа, поэтому, если выбор пал на стабилизатор с сервоприводом, предпочтение стоит отдать электродинамическому.

Стабилизаторы релейного типа

Этот вид регуляторов также основан на изменении коэффициента трансформации автотрансформатора. Однако в данном случае это происходит ступенчато. Регулировочная часть первичной обмотки имеет ряд выводов (отпаек), расположенных через определённое количество витков. Каждая из отпаек может подключаться к электросети нормально разомкнутыми контактами соответствующего электромагнитного реле.

Примечание. Нормально разомкнутыми называются контакты реле, находящиеся в разомкнутом состоянии при обесточенной катушке.

Как работают? Управление электромагнитными реле осуществляет контроллер, отслеживающий уровень напряжения на нагрузке и в случае его отклонения подающий напряжение на катушку реле, коммутирующего требуемую отпайку. Разумеется, в любой момент времени включенным может быть только одно реле. Ну а поскольку регулировка носит ступенчатый характер, контроллер всегда включает то реле, отпайка которого обеспечивает наиболее близкое к номиналу значение вторичного напряжения.

Стабилизаторы релейного типа уверенно превосходят электромеханические по такому показателю, как скорость реакции на резкие изменения величины питающего напряжения. Время переключения электромагнитных реле обычно не превышает 10 миллисекунд.

Однако наличие определённого количества фиксированных отпаек обмотки автотрансформатора снижает точность регулирования напряжения. Улучшить этот показатель в рамках данной конструкции можно путём увеличения количества отпаек и уменьшением числа витков между ними. Но проблема заключается в том, что с увеличением количества отводов обмотки значительно усложняется и становится громоздкой схема автотрансформатора, а если учесть, что к каждой отпайке должно подключаться индивидуальное реле, то становится понятно, что данный путь приведёт к существенному удорожанию изделия и загромождению внутреннего пространства корпуса.

К сказанному следует добавить следующее. Контакты электромагнитного реле, безусловно, более надёжны, чем токосъёмный контакт устройств с сервоприводом, тем не менее, они являются движущимися механическими частями, которым свойственны износ и обгорание.

Электронные стабилизаторы

Данный класс устройств аналогичен релейным стабилизаторам, только коммутацию отпаек осуществляют не механические контакты электромагнитных реле, а электронные ключи – тиристоры. Как и в релейных стабилизаторах, в электронных устройствах к каждой отпайке обмотки присоединён свой электронный ключ, и так же как в случае с реле, одновременно в открытом состоянии не может находиться более, чем один ключ. При использовании обычных тиристоров, имеющих одностороннюю проводимость, каждый ключ должен представлять собой два тиристора, включенных встречно – параллельно. Применение в конструкции симметричных тиристоров (симисторов) позволяет использовать в каждом ключе только один прибор. Открывание тиристора происходит при подаче электрического импульса на управляющий электрод.

Электронная серия Lider W от одноименного производителя

Электронные стабилизаторы имеют неоспоримое преимущество перед рассмотренными ранее приборами, выраженное в полном отсутствии каких либо механических контактов и движущихся частей.

Электронные симисторные стабилизаторы серии Энергия PREMIUM, читайте полный обзор.

Кроме этого, электронные устройства обладают самой быстрой реакцией на изменение напряжения, обусловленной высокой скоростью переключения электронных ключей. С другой стороны, тиристорные и симисторные стабилизаторы обладают всеми недостатками, присущими приборам, использующим ступенчатое регулирование. Возможность увеличения точности стабилизации этих устройств ограничивается техническими трудностями, связанными с увеличением числа отводов обмотки и количества электронных ключей.

Но, эти минусы ничто, в сравнении с надежностью и скоростью срабатывания. А по сочетанию цена-надежность, тиристорно-симисторное семейство вообще лидеры из всех.

Гибридные устройства

Идея создания таких стабилизаторов заключается в том, чтобы придать изделию лучшие черты, присущие приборам различного типа. Так, распространённые в настоящее время гибридные устройства совмещают в себе принципы сервоприводных и релейных стабилизаторов. В диапазоне входного напряжения, доступного для сервоприводного устройства, стабилизация осуществляется с высокой точностью, свойственной приборам этого типа.

В случаях, когда питающее напряжение выходит за рамки, доступные электромеханическому регулированию, в работу вступает релейный регулятор, который добавляет или исключает из вторичной обмотки группу витков, дополнительно изменяя таким способом коэффициент трансформации.

В результате, такие устройства обладают высокой точностью стабилизации, свойственной приборам, использующим сервопривод, и при этом способны работать в расширенном диапазоне питающего напряжения, что присуще релейным стабилизаторам.

Стабилизаторы инверторного типа

Данные устройства называют также стабилизаторами двойного преобразования. Суть преобразований сводится к следующему. Входное сетевое напряжение сначала выпрямляется, после чего поступает на вход инвертора, где вновь преобразуется в переменное, имеющее синусоидальную форму.

Главной частью устройства является инвертор, осуществляющий преобразование с помощью мощных IGBT – транзисторов, управляемых микропроцессорным блоком. Именно этот блок ответственен за синусоидальность выходного напряжения.

Отступление. Зачем обращать внимание на синусоидальность?

Попытаемся разобраться, почему так важна именно синусоидальная форма питающего напряжения. Дело в том, что переменное напряжение, представляющее собой периодическую функцию времени, как любая периодическая функция, в соответствии с теоремой Фурье может быть представлена как сумма синусоидальных гармонических составляющих, имеющих частоту, кратную частоте исходной функции. И только правильная синусоида не имеет таких составляющих, называемых в электротехнике гармониками.

Читайте также:  Замена передних стоек стабилизатора пежо 407

Из сказанного следует то, что любое, даже самое малое отклонение напряжения, имеющего промышленную частоту 50 Герц от синусоидальной формы, приводит к появлению дополнительных сигналов, имеющих частоту 100 Гц, 150 Гц, 200 Гц и так далее. Указанные высокочастотные составляющие оказывают неблагоприятное воздействие на различные приёмники электроэнергии, являясь источниками паразитного излучения электромагнитных волн. По этой причине, наличие в питающем напряжении высокочастотных составляющих строго регламентируется ГОСТ путём установления норм коэффициента несинусоидальности, коэффициента n – й гармонической составляющей, коэффициентов обратной и нулевой последовательностей.

Сетевое напряжение изначально приобретает синусоидальную форму при его выработке на электростанциях ввиду базовых свойств электрических генераторов. Разумеется, любой генератор, представляющий собой физический объект, отличается от математической модели. Поэтому незначительные отклонения от синусоиды появляются уже на стадии производства электроэнергии. Далее свою лепту в ухудшение формы кривой напряжения могут вносить потребители, эксплуатирующие оборудование, создающее высокочастотные помехи, распространяющиеся по сети. Поэтому получаемое нами из сети напряжение изначально может быть в той или иной степени несинусоидальным.

Рассмотренные ранее стабилизаторы, работающие по принципу изменения коэффициента трансформации, не внося собственных искажений в форму кривой напряжения, всё же не могут исправить исходную несинусоидальность, трансформируя её и передавая нагрузке. В этом смысле инверторные преобразователи отличаются тем, что они сами формируют синусоиду. Устройства данного типа находятся на стадии совершенствования, поэтому форма выдаваемого ими напряжения постоянно приближается к идеальной синусоиде с каждой новой разработкой.

По всем остальным техническим характеристикам инверторные стабилизаторы превосходят устройства другого типа, имея более высокую точность стабилизации, значительно более широкий диапазон входного напряжения. Инверторы более компактны и легки, в первую очередь по причине того, что не имеют трансформатора.

Финальные советы

Если дочитав до данного отрезка статьи, вы не определились с выбором, то вот вам параметры от стабэксерт.ру, которые следует учитывать при выборе конкретного стабилизатора.

Мощность устройства

На это следует обратить внимание в первую очередь, вне зависимости от типа выбираемого прибора. Для определения требуемой мощности стабилизатора необходимо просуммировать электрическую нагрузку всех электроприборов, напряжение на которых предполагается стабилизировать. Значение мощности обычно указывается в паспорте электроприбора, и как правило, на прикреплённом к нему шильдике (табличке). Мощность лампы освещения указывается на её цоколе. Лучше, если мощность стабилизатора будет превышать установленную мощность электроприборов процентов на 20 – 30. Это убережет устройство от перегрузок и продлит срок его эксплуатации.

При оценке мощности следует учесть одно обстоятельство. Существует понятие полной, активной и реактивной мощности. В первую очередь нас интересует активная составляющая, измеряемая в ваттах, значение которой чаще всего и указывается на электроприборе. Однако некоторые производители стабилизаторов могут указывать полную мощность своих изделий, которая измеряется в вольт-амперах (В·А). Чтобы опять не вдаваться в теорию, для получения значения активной мощности, в этом случае можно умножить величину полной мощности на 0,9. Основная часть нагрузки бытовых потребителей носит активный характер. Реактивной составляющей обладают электрические двигатели и люминесцентное освещение.

Полезное: для вычисления мощности используйте наш калькулятор.

Тип стабилизатора

Этот выбор основывается на оценке основных характеристик рассматриваемых типов устройств и особенностях местной системы электроснабжения. Сравнивая параметры стабилизаторов различных типов, можно заметить, что выигрывая в одном качестве, прибор часто уступает в иных качествах стабилизаторам другого типа. В этом случае решающим фактором при выборе должен служить анализ параметров электроснабжения.

Например, в районах, характеризующихся устойчивыми длительными отклонениями уровня питающего напряжения в ту или иную сторону, логично сделать выбор в пользу стабилизаторов с плавной системой регулирования, имеющим сервопривод, как обладающих наиболее высокой точностью стабилизации. В такой же ситуации, но с отклонениями питающего напряжения в очень большом диапазоне, спасти положение поможет стабилизатор гибридного типа. Если же электропитание сопровождается весьма частыми и резкими скачками уровня напряжения, более надёжную защиту обеспечат стабилизаторы релейного или электронного типа.

Что касается устройств инверторного типа, то по заявляемым производителями характеристикам они являются универсальными. Главным вопросом с технической точки зрения является то, насколько близка к синусоиде реальная кривая выдаваемого этими аппаратами напряжения. Претензия к этим приборам с экономической точки зрения состоит в том, что пока они являются самыми дорогими.

Про надежность

И ещё о вопросах надёжности. Говоря о том, что электронные устройства, лишённые механических контактов и движущихся частей обладают более высокой надёжностью, мы только излагаем общую теоретическую концепцию. На практике, надёжность электронных приборов зависит от того, насколько удачным является само схемное решение, где каждый используемый компонент должен работать в рамках допустимых параметров и иметь соответствующее качество изготовления. Особенно большим потоком отказов страдают новые устройства, не прошедшие апробацию длительной эксплуатацией. Поэтому не редки ситуации, когда старые добрые механические устройства оказываются надёжнее новых электронных систем. Безусловно, это не следует принимать, как обязательное правило, эти явления скорее относятся к болезням роста. Будущее, конечно же, за электронной и микропроцессорной техникой, функциональность и надёжность которой постоянно растёт.

Выжимка. Самый сок статьи

Информация ниже, дана в «среднем», но каждая конкретная модель может выходить за рамки «среднего».

Релейные приборы: быстрее сервоприводных и шире по диапазону, но регулирование ступенчатое, т.е. на лампах накаливания могут быть видны переключения ступеней (в виде мерцания). Издают негромкие щелчки при переходе со ступени на ступень ( Редакция: СтабЭксперт.ру

Источник